
Indi Games Engine
Release 0.0.1

admin@indigames.net

Sep 12, 2022

GETTING STARTED

1 Contents 3
1.1 Installation . 3
1.2 Editor Layout . 3
1.3 Your First Scene . 10
1.4 Input . 14
1.5 Graphics . 16
1.6 Animation . 24
1.7 Graphical User Interface . 29
1.8 Audio . 43
1.9 Physic . 45
1.10 Navigation . 57
1.11 Particle System . 67
1.12 Platform Configuration . 70
1.13 Third-Person Shooter . 74
1.14 Python API . 114

i

ii

Indi Games Engine, Release 0.0.1

Indigames Game Engine is a flexible, efficient, free to use game engine, supports developing high quality games with
ease and speed.

The documents include detailed instructions, and step-by-step tutorials to help you quickly learn how to develop cross-
platform games with Indigames’ Engine.

Note: This project is under active development.

GETTING STARTED 1

Indi Games Engine, Release 0.0.1

2 GETTING STARTED

CHAPTER

ONE

CONTENTS

1.1 Installation

1.1.1 From sources

Compiling igeCreator from sources requires using Visual Studio 2019 and CMake. You will need to clone the repository
and run the scripts\genProject.bat, the visual studio project will be generated in project\igeCreator.sln.

1.1.2 From a release build

You can download the release build by checking a releases list.

1.2 Editor Layout

When launching igeCreator for the first time, you will see the Editor window similar to this:

3

https://github.com/igeCreator

Indi Games Engine, Release 0.0.1

1.2.1 Menu Bar

Menu Bar provides some functions to control the editor windows, as well as tools and other settings related to the scene.

1.2.2 Toolbar

Toolbar provides controls onto your scene. It allows you to play, pause, resume, stop the game preview. It also alows
changing Gizmo and Camera modes.

1.2.3 Scene View

The Scene View is the main view of igeCreator editor. It will give you a real-time feedback of what is happening in
your current scene while manipulate the objects and settings using the editor.

To asjust the editor camera, use controls below:

Action Input
Rotate [Mouse] Drag Right Button
Zoom [Mouse] Scroll Middle Button
Move [Mouse] Drag Middle Button
Focus [Keyboard] Press F Key

To add game object to the scene, just drag and drop the asset files in the scene view, based on the file type the engine
will create game object and attach relevant component(s) automatically.

4 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

The game object can also be added to the scene by seleting and right-clicking the parent object to show the Create
Menu with various types of object to create.

Also, the object can be manipulated with actions below:

Action Input
Select [Mouse] Click Left Button
Multi Select [Mouse] Drag Left Button
Copy [Keyboard] Press Ctrl + C Key
Paste [Keyboard] Press Ctrl + V Key
Duplicate [Keyboard] Press Ctrl + D Key
Delete [Keyboard] Press Del Key

1.2.4 Game Preview

The Preview, like the Scene View, reflects what is happening in your scene, from your game active camera. The editor
will automatically focus the Preview when playing the scene.

Note: The GUI layer is hidden in editing mode, so that developer can focus on adjusting the 3D scene. In playing
mode, the game will be played just like it will be on devices.

1.2. Editor Layout 5

Indi Games Engine, Release 0.0.1

1.2.5 Hierarchy

The Hierarchy window shows the current scene hierarchy with relations between objects. Besides, you can also cre-
ate/select/delete/move/copy/paste/drag objects in this view.

User can select object by clicking the item in the tree. Multiple selection can be done with with help of using Ctrl and
Shift keys.

User can also drag and drop object to create parent-children relationship in the hierarchy tree. Assets drag and drop in
hierarchy is also implemented.

To create prefab, just simply drag the item in hierarchy to prefabs folder in the Assets Browser.

Tip: To focus the camera on an object in complex scene, select it node in hierarchy and press F key.

1.2.6 Inspector

In the Inspector you’ll be able to view and edit the currently selected object. Adding, tweaking and removing compo-
nents, changing object settings (name, tag, transform. . .).

All the object has Transform component by default. The GUI element will have RectTransformwhich is a derivative
of Transform component specilized for 2D and GUI.

Besides, there are various types of component which can be added into a game object, such as:

Component Usage
Camera Camera in game
Figure Model (IGE Engine format)
Sprite Sprite in game
Animator Animation controller
Particle Particle effect

continues on next page

6 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Table 1 – continued from previous page
Component Usage
Script Scripting, to control object’s behavior
Text Text in game, using TTF or Bitmap
AmbientLight Ambient Light
DirectionalLight Directional Light
PointLight Point Light
SpotLight Spot Light
AudioSource Audio source
AudioListener Audio Listener
Canvas Canvas for rendering GUI
UIImage GUI Image
UIText GUI Text
UITextField GUI Text Field
UIButton GUI Button
UISlider GUI Slider
UIScrollView GUI Scroll View
UIScrollBar GUI Scroll Bar
UIMask GUI Mask
PhysicBox Physic Box collider
PhysicSphere Physic Sphere collider
PhysicCapsule Physic Capsule collider
PhysicMesh Physic Mesh collider
PhysicSoftBody Physic Soft-Body and cloth simulation
Navigable Mark object/mesh as navigable
NavMesh Navigation mesh
DynamicNavMesh Dynamic navigation mesh
NavAgent Navigation agent
NavObstacle Navigation obstacle
NavArea Mark the navigation area
OffMeshLink Link between navigation areas

Note: Usage of each component will be discussed in Tutorials sections.

1.2.7 Console

Show log from the engine as well as the game so that it’s easier for developer to debug.

Note: The console reflects the log from Python API, so to print the log user just need to use print() function from
Python API.

1.2. Editor Layout 7

Indi Games Engine, Release 0.0.1

8 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.2. Editor Layout 9

Indi Games Engine, Release 0.0.1

1.2.8 Asset Browser

Provides access to all assets of the project. User can create/move/delete files as well as using right-clicking context
menu to perform various actions.

The Asset Browser allows you to drag and drop assets to places like Scene View to create object, or Inspector to
configure object. . .

1.3 Your First Scene

1.3.1 Create Project

Go to the menu bar: File -> New Project to create new project. This action also create new empty scene for the
newly created project.

This scene is composed of two object: a directional light, and a camera.

Having a camera in a scene is essential for the game to show something onto the screen.

You can go to the menu bar: File -> Save Scene to save the scene. Then you can click the Play button in the
Toolbar to preview the scene.

A project can contain multiple scenes. To create a new scene, go to File -> New Scene. To load a scene, go to File
-> Load Scene or just drag a file with .scene extension in the Scene View.

To change a scene at runtime, we need to use Python API which will be introduced later.

10 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.3. Your First Scene 11

Indi Games Engine, Release 0.0.1

1.3.2 Project Structure

Item Meaning
config [Folder] Contains project’s configuration.
figures [Folder] Contains models and animations.
fonts [Folder] Contains fonts used in the project.
scenes [Folder] Contains scene files.
scripts [Folder] Contains game logic source codes.
sounds [Folder] Contains audio files.
sprites [Folder] Contains UI and 2D images.
*.igeproj [File] The project file

1.3.3 Create Object

In order to add an object to the scene, select and right-click an item in Hierarchy, select Create -> Primitive ->
Cube.

You should now see a cube in your scene.

12 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.3.4 Scripting

To control behavior of an object, we use Script Component.

In the Inspector, add new Script Component.

In the Asset Browser, go to scripts, right-click then select New Script, then name it move.py.

Open the newly created file, edit it with content below:

import math
import igeVmath as vmath
from igeScene import Script

class Move(Script):
def __init__(self, owner):

(continues on next page)

1.3. Your First Scene 13

Indi Games Engine, Release 0.0.1

(continued from previous page)

super().__init__(owner)
self.elapsed = 0.0

def onUpdate(self, dt):
self.elapsed = self.elapsed + dt
self.owner.transform.position = vmath.vec3(0, math.sin(self.elapsed), 0)

Then drag the file in Script component Inspector.

Save the scene, by pressing Ctrl + S or File -> Save Scene. Then you can press the Play button to test it, the
cube should keep moving up and down follow sin pattern continuosly.

1.4 Input

Input allows the user to interact with the game using input devices.

IGE supports many types of inputs, including:

• Touch Screen

• Mouse

• Keyboard

• (WIP) Motion Sensors: Accelerometor, Gyroscope

• (WIP) Joystick

• (WIP) Controller

14 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.4.1 Using Touch Screen

The Input module is a Python module which provides functions to work with input devices.

To simplify the implementation, the Touch Screen and Mouse inputs are implemented in igeCore.input.touch
module. We support multiple touch by default.

Mouse events are map to touch, with special finger Id for left, right and middle buttons.

Below is an example of how to use Touch to control UI behavior:

from igeScene import Script
from igeCore.input.touch import Touch

class TouchTest(Script):
def __init__(self, owner):

super().__init__(owner)

def onUpdate(self, dt):
for i in range(0, Touch.count()):

x,y = Touch.getPosition(i)
if Touch.isPressed(i):

print(f"Pressed {Touch.getId(i)} at ({x}, {y})")

1.4.2 Using Keyboard

To get access to Keyboard, use the igeCore.input.keyboard API.

Below is an example of how to use keyboard:

from igeScene import Script
from igeCore.input.keyboard import KeyCode, Keyboard

class KeyboardTest(Script):
def __init__(self, owner):

super().__init__(owner)

def onUpdate(self, dt):
if Keyboard.isPressed(KeyCode.KEY_SPACE):

print("SPACE pressed - FIRE")

1.4.3 Using Virtual Keyboard

Use the API below to show/hide virtual keyboard.

from igeScene import Script
import igeCore
from igeCore.input.keyboard import KeyCode, Keyboard

class VirtualKeyboardTest(Script):
def __init__(self, owner):

super().__init__(owner)

(continues on next page)

1.4. Input 15

Indi Games Engine, Release 0.0.1

(continued from previous page)

def onUpdate(self, dt):
if not igeCore.isVirtualKeyboardShown(): # check if VK is show

igeCore.showVirtualKeyboard("Input default text here...") # request show VK

if Keyboard.isPressed(KeyCode.KEY_RETURN):
text = igeCore.getInputText() # get the text
igeCore.hideVirtualKeyboard() # hide the keyboard

1.5 Graphics

IGE graphics features help to create beautiful, optimized graphics across a range of platforms, from mobile to desktop
through an easy to use workflow.

1.5.1 Assets workflow

Graphics assets including model, animation, texture and shader can be loaded, converted and displayed using IGE.

Animation and model files such as Collada DAE and FBX are imported to IGE then converted to IGE
optimized format in which:

• *.pyxf: Use for model

• *.pyxa: Use for animation

Texture files are imported and converted to:

• *.pyxi: Use for texture

1.5.2 Render Pipeline

The builtin render pipeline is implemented using forward rendering technique, which utilize OpenGL 3.x / OpenGLES
3.x API.

Forward rendering renders each object in one or more passes:

• OpaquePass

• TransparentPass

• ShadowPass

1.5.3 Camera

A game represents game objects in a 3D space. The device’s screen is 2D space, thus using camera help to capture the
scene to display it in the device screen.

Camera can be created by adding a Camera component to a game object, or using Create Menu -> Camera.

Using perspective camera, objects which are far away are smaller than those nearby which is similar to the real life.
Orthographic camera is useful to display the scene where all objects appear at the same scale, like GUI or isometric
view.

Camera inspector reference:

16 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
FOV Field of view
Near Near clipping
Far Far clipping
Aspect Aspect ratio
Up Up vector: 0 = X, 1 = Y, 2 = Z
Ortho Orthographic or perspective camera
OrtW Ortho width
OrtH Ortho height
LockTarget Lock target, create follow camera
Target Position of target to follow
wBase Whether width based or heigh based scaled
ScrScale Screen scale factor
ScrOffset Screen offset factor
ScrRot Screen rotation factor
ClearColor Color set to when clear screen

Camera can be controlled by using Python API, with module igeScene.Camera. Check the Camera API Document
for more info.

Multiple camera also supported, but only one active camera can be used at a time (in combination with builtin GUI
Camera). To set current camera as active, use Python API as example below:

from igeScene import Script

class GameManager(Script):
def __init__(self, owner):

super().__init__(owner)
(continues on next page)

1.5. Graphics 17

_static/html/igeScene.html#igeScene.Camera

Indi Games Engine, Release 0.0.1

(continued from previous page)

def onUpdate(self, dt):
find a camera and set it active
camera = self.owner.scene.findObjectByName("MyCamera")
if camera is not None:

self.owner.scene.activeCamera = camera

1.5.4 Lighting

Ambient Light

Ambient light is diffuse environmental light that is present all around the Scene and doesn’t come from any specific
source object. It can be an important contributor to the overall look and brightness of a scene.

Ambient light can be useful in a number of cases, depending upon your chosen art style. An example would be bright,
cartoon-style rendering where dark shadows may be undesirable or where lighting is perhaps hand-painted into textures.
It can also be useful if you need to increase the overall brightness of a scene without adjusting individual lights.

Property Function
SkyColor Ambient sky color
GroundColor Ambient ground color
Direction Ambient direction vector

Tip: AmbientLight component is usually attached to the root node of the object hierarchy tree, because one scene
needs only one Ambient light settings.

Point Light

A Point Light is located at a point in space and sends light out in all directions equally. The direction of light hitting a
surface is the line from the point of contact back to the center of the light object.

18 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
Color Light color
Intensity Light intensity value
Range Range of effectiveness

Spot Light

Like a Point Light, a Spot Light has a specified location and range over which the light falls off. However, a Spot Light
is constrained to an angle, resulting in a cone-shaped region of illumination.

Property Function
Color Light color
Intensity Light intensity value
Range Range of effectiveness
Angle Constrained angle

Directional Light

Directional Lights are useful for creating effects such as sunlight in your scenes. Behaving in many ways like the sun,
directional lights can be thought of as distant light sources which exist infinitely far away. A Directional Light doesn’t
have any identifiable source position and so the light object can be placed anywhere in the scene. All objects in the
scene are illuminated as if the light is always from the same direction.

By default, every new scene contains a Directional Light represents the sunlight/moonlight.

Property Function
Color Light color
Intensity Light intensity value

Note: The direction of light is controlled by the rotation property of the object it attached to.

1.5. Graphics 19

Indi Games Engine, Release 0.0.1

1.5.5 Shadows

IGE uses a technique called shadow mapping to render real-time shadows.

Shadow mapping uses textures called shadow maps. Shadow map texture resolution is set to 2048x2048 by default,
and can be as largest as 4096x4096. Using larger texture result in higher quality, but it costs more VRAM and may
decrease game performance.

To display shadow, ensure to have:

• Shadow caster objects has enabled casting ability.

• Shadow receiver has been enabled receiving ability.

• Directional Light is ebabled and the light direction can cast shadow from shadow casters to shadow receiver.

• Shadow parameters setup correctly.

When importing models, the ability to cast/receive shadow is disabled by default, to preserve best performance. To en-
able these abilities, go to Assets Browser, select the file to modify, in Assets windows, enable it’s flags accordingly
then save it.

The shadow parameters can be adjusted with Environment component, attached to the root node of the hierarchy.

Property Function
Color Shadow color
Size Shadow map texture size
Density Shadow density
Wideness Shadow wideness
Bias Shadow Bias value

20 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Note: With current implementation, only the first DirectionalLight can cast shadow because shadow transformation
depends on the light direction.

Tip: Wideness and size are related, so wideness shoule be smaller as possible so it can improve shadow quality, or
can use smaller size to improve performance.

1.5.6 Fogs

IGE provide basic fog setting to simulate fog.

1.5. Graphics 21

Indi Games Engine, Release 0.0.1

Property Function
Color Fog color
Near Fog near distance
Far Fog far distance

1.5.7 Model

Models are files that contain data about the shape and appearance of 3D objects, such as characters, terrain, or envi-
ronment objects. Model files can contain a variety of data, including meshes, materials, and textures. They can also
contain animation data, for animated objects. Usually, models are created using an 3D modeling software, such as
Blender®, Autodesk® Maya®, Autodesk® 3ds Max® . . . , and then import them into IGE.

IGE supports importing .dae and .fbx file formats. After importing to IGE, the files are converted to .pyxf format
which is specially optimized for IGE. The game engine will automatically detect changes in the file system, and import
model files accordingly.

Importing

In order to change importing options, go to Assets Browser, select the file to change settings, then look for Assets
windows, then change the options when needed.

22 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
EXPORT_NAMES Include meshes name in exported version
BASE_SCALE Base scale factor (dae: 1.0, fbx: 100.0)
TRIANGLE_STRIP [Optimize] Strip redundant trianges
OPTIMIZE_MESH [Optimize] Optimize mesh
OPTIMIZE_VERTEX [Optimize] Optimize vertex
OPTIMIZE_ANIMATION [Optimize] Optimize animation
SHADER_MAKE_SHADOW Enable shadow casting
SHADER_RECEIVE_SHADOW Enable shadow receiving
SHADER_VERTEX_COLOR Enable vertex color
SHADER_NUM_DIR_LAMP Number of directional light
SHADER_NUM_POINT_LAMP Number of point light
SHADER_NUM_SPOT_LAMP Number of spot light
EMBEDDED_ANIMATION Embbed animation, or build saparate anim file

Using Model

Model can be dragged to the Scene View to create scene object. Also, it can be attached to Figure or
EditableFigure components of an empty object.

Figure component is used to render ‘fixed’ model, wothout ability of modifying mesh structures. It is the fasted way
to render model using IGE. EditableFigure is used in case model’s mesh need to be changed at run time.

1.5. Graphics 23

Indi Games Engine, Release 0.0.1

Property Function
Path Path to the model file
Fog Enable/disable fog
DoubleSide Enable/disable double side rendering
FFCulling Enable/disable front-face culling
Z-Test Enable/disable depth testing
Z-Write Enable/disable depth writing
ScissorTest Enable/disable scissor test
Update Ratio Updating ratio, used to control animation speed
Mesh List of meshes included in the model file
Material List of materials included in the model file

For more details of scripting API, please refer to Python API Document.

1.6 Animation

IGE animation system provides:

• Easy workflow and setup of animations.

• Preview of animation clips, transitions and interactions between them.

• Management of complex interactions between animations with a visual programming tool.

• Layering and masking features.

24 Chapter 1. Contents

_static/html/igeScene.html#igeScene.Figure

Indi Games Engine, Release 0.0.1

1.6.1 Animation Clips

Animation Clips are one of the core elements to IGE animation system, which are imported from external sources
such as animation from Blender®, Autodesk® Maya®, Autodesk® 3ds Max® . . . softwares. In Assets Browser,
animation clip files have .pyxa extension.

1.6.2 Animator Controllers

An Animator Controller allows you to arrange and maintain a set of animations for a character or other animated
scene objects. The controller has references to the animation clips used within it, and manages the various animation
states and the transitions between them using a Animation State Machine.

To create an Animator Controller, right-click on the Assets Browser, select New Animator, like below:

Double-clicking the new created file will open Animator Window which can be used to create, view and modify the
animator controller.

The animator controller is then finally applied to an object by attaching an Animator component that references them.
See the Python API Document for further details about their usage.

1.6.3 The Animator Window

The Animator Window allows you to create, view and modify Animator Controller assets.

The window contains:

• Layout Area: use to create, arrange and connect states in your Animator Controller.

• Layers Area: use to view and edit layers within Animator Controller. IGE allows to have multiple layers within
a single animator controller, to control different parts of the object using separate state machine.

1.6. Animation 25

_static/html/igeScene.html#igeScene.Animator

Indi Games Engine, Release 0.0.1

• Parameters Area: allow to create, view and edit the parameters using in Animator Controller. Those parameters
are variables which act as input for the state machine, to control the transitioning condition between states.

• Inspector: to edit state, or transition settings.

1.6.4 Animation State Machines

Animation State Machines represent an overview of all of the animation clips related to a particular animation object,
and allow various events in the game to trigger different animations.

State Machines consist of States, Transitions and Events which together provide control overall animations behavior of
a single object using Animator Controller.

26 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.6.5 Animation Parameters

Animation Parameters are variables that are defined within an Animator Controller that can be accessed and as-
signed values from scripts. This allow developer to control the behavior of animation system using IGE.

Parameter values can be set up using the Parameters Area of the Animator Window.

The parameters can be of four basic types:

• Integer: a integer number

• Float: a float number

• Bool: a true / false value

• Trigger: a true/false value that is reset by the controller when consumed by a transition

Parameters can be assigned values from a script using functions in the Animator class, using Python API below:

from igeScene import Script, Animator
from igeCore.input.touch import Touch
from igeCore.input.keyboard import KeyCode, Keyboard

class SimpleCharacter(Script):
def __init__(self, owner):

super().__init__(owner)

def onStart(self):
self.animator = self.owner.getComponent("Animator")
self.animator.resetTrigger("fire")

def onUpdate(self, dt):
x,y = Touch.getPosition(0)
fire = Keyboard.isPressed(KeyCode.KEY_SPACE)
self.animator.setFloat("move_x", x)
self.animator.setFloat("moveZ_y", y)
self.animator.setTrigger("fire", fire)

More details about Animator API, please check Python API Document.

1.6. Animation 27

_static/html/igeScene.html#igeScene.Animator

Indi Games Engine, Release 0.0.1

1.6.6 Animation transitions

Animation transitions allow the state machine
to switch or blend from one animation state to another. Transitions define not only how long the blend between
states should take, but also under what conditions they should activate.

Each view in the animator window has:

• Entry: The entry node will be evaluated first to select which state the state machine begins with, by evaluating
the state of your parameters when the state machine begins.

• Exit: used to indicate that a state machine should exit.

• Any: specify a situation where you want to go to a specific state regardless of which state you are currently in.

• Other states: animation states in the Animator Controller.

You can set up a transition to occur only when certain conditions are true. To set up these conditions, specify values
of parameters in the Animator Controller, then setting up the transition condition in Inspector view.

Property Function
Mute Whether this transition is considered
Offset The offset to begin in the destination state
HasExitTime Make transition at the specific time specified in ExitTime
ExitTime Represents the exact time at which the transition can take effect
FixedDuration If checked, the transition time is interpreted in seconds.
Duration Transition duration (normalized time or seconds, depends on FixedDuration flag).
Conditions Transition conditions

28 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Transition Conditions

A transition can have a single condition, multiple conditions, or no conditions at all. A condition consists of:

• An event parameter, the value of which is considered in the condition.

• A conditional predicate, if needed (for example, less or greater for floats).

• A parameter value, if needed.

If HasExitTime is enabled for the transition and has one or more conditions, these conditions are only checked after
the exit time of the state. This allows you to ensure that your transition only occurs during a certain portion of the
animation.

1.7 Graphical User Interface

IGE includes is a set of tools for developing user interfaces for games and applications.

1.7.1 Canvas

The Canvas is a game object with a Canvas component on it. All UI elements must be children of a Canvas. Creating
a new UI element, such as an UIImage using the menu Create > GUI > UIImage, automatically creates a Canvas,
if there isn’t already a Canvas in the scene.

Tip: To work with GUI, switch the Scene Camera to 2D mode. The Canvas will be displayed as a rectangle in the
view, it help to easier posioning the UI elements on the scene.

The Canvas component can be setting up using Inspector.

1.7. Graphical User Interface 29

Indi Games Engine, Release 0.0.1

Property Function
DesignSize Canvas design screen size
TargetSize Target screen size (Editor only)
ScreenMatchMode

• MatchWidthOrHeight: match with width/height
following a ratio

• Extend: match the maximal screen scale ratios
• Shrink: math the minimal screen scale ratios

1.7.2 RectTransform

The RectTransform is a new transform component that is used for all UI elements. It has position, rotation, and scale
just like regular Transforms, but it also has a width and height, used to specify the dimensions of the rectangle.

Property Function
X, Y, Z Position X, Y, Z
W, H Width and Height
AnchorMin Lower left anchor handle
AnchorMax Upper right anchor handle
Pivot Pivot position
Rotation Rotation value
Scale Scale value

Tip: Use Z position to adjust the drawing order of elements, and may also help to resolve Z-fighting issues.

30 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Pivot

Rotations, size, and scale modifications occur around the pivot so the position of the pivot affects the outcome of a
rotation, resizing, or scaling.

Anchors

A child RectTransform can be anchored to the parent RectTransform in various ways:

Tip: The blue arrow indicates that the child will stretch together with parent size, in horizontal, vertical or both
accordingly.

1.7.3 UI Components

With the introduction of the UI system, new Components have been added that will help you create GUI specific
functionality.

UIImage

The UIImage component is used to display an image on screen.

The Inspector window allows to change the image settings:

1.7. Graphical User Interface 31

Indi Games Engine, Release 0.0.1

Property Function
Path The path to the image file
Inteactable Ability to receive events using Script
Sprite Type The Sprite type, can be:

• Simple: simple sprite
• Sliced: 9-slices sprite

Fill Method Allow to fill just part of an image by:
• Horizontal
• Vertical
• Radial 90
• Radial 180
• Radial 360

Fill Origin Fill origin, can be:
• Left
• Right
• Bottom Left
• Bottom Right
• Top Left
• Top Right

Fill Amount Amount of filling, from 0.0 to 1.0.
Clockwise Fill direction, clockwise or counter-clockwise
Color Diffuse color

32 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

UIMask

An UIMask is not a visible UI control but rather a way to modify the appearance of a control’s child elements. The
mask restricts the child elements to the shape of the parent. So, if the child is larger than the parent then only the part
of the child that fits within the parent will be visible.

Property Function
Enable Enable/disable mask
Fill Method Allow to fill just part of an image by:

• Horizontal
• Vertical
• Radial 90
• Radial 180
• Radial 360

Fill Origin Fill origin, can be:
• Left
• Right
• Bottom Left
• Bottom Right
• Top Left
• Top Right

Fill Amount Amount of filling, from 0.0 to 1.0.
Clockwise Fill direction, clockwise or counter-clockwise

UIText

The UIText component has a Text area for entering the text that will be displayed.

It is possible to set the font, font style and font size, and alignment of the text using Inspector.

1.7. Graphical User Interface 33

Indi Games Engine, Release 0.0.1

Property Function
RectAutoScale Auto resize the Rect Transform with text size
Text The text to display
Font The font to display (.ttf, .otf, .pybm)
Size The font size
Color Text color
AlignHorizontal Horizontal alignment
AlignVertical Vertical alignment

The UIText support drawing text using true-type font (.ttf, .otf) and bitmap font (.pybm) formats.

Bitmap Font Creator can be used to create bitmap font, which can be found at Menu -> Tool -> Bitmap Font
Creator.

Property Function
Load FontBitmap Load the saved bitmap font
Save FontBitmap Save the bitmap font
Image Path to the image file (.pyxi)
Characters Set Characters set to be generated
Generate Glyphs Generate/reset glyphs for input characters set
Texture Size The image size
Font Size The font size
Font Base Size The font base size
Index Glyph index
Unicode Character in Unicode format
Position Top-left position of the character in the image
Size Size of the character
Offset Character offset
Advance Character advance width

To create new bitmap font, flows steps below:

• Accquire bitmap texture file which contains all the characters, copy it to fonts folder.

• Open Bitmap Font Creator, select the image file.

• Input all the characters that is supported in Characters Set textbox.

• Generate glyphs by pressing Generate Glyphs button.

34 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.7. Graphical User Interface 35

Indi Games Engine, Release 0.0.1

• For each glyphs, input the position, size, offset and advance value.

• Save the font by pressing Save FontBitmap button.

• Test the font by create UIText component, then drag and drop the newly created font in the Inspector window.

Note: Bitmap font only displayed as RGB texture if background use alpha channel. Otherwise, it will render as
grayscale color to resolve alpha issue.

Tip: Saved Bitmap fonts can be modified with new characters set. Just need to add more character in the Characters
Set textbox, then press Generate Glyphs, it will create new glyphs without affects existing glyphs.

Tip: Better to use an image editor (such as Paint.NET(R), MS Paint(R), Adobe(R) Photoshop(R)) to mesure the
character attributes to put in the glyphs parameters.

UITextField

UITextField is used to display an editable text box to the user.

The usage of this component is similar to UIText, except it allows text to be input by user.

Property Function
RectAutoScale Auto resize the Rect Transform with text size
Text The text to display
Font The font to display (.ttf, .otf, .pybm)
Size The font size
Color Text color
Background Text background color
AlignHorizontal Horizontal alignment
AlignVertical Vertical alignment

36 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

To handle the input ended event, add this code to Script:

from igeScene import Script

class TxtUserName(Script):
def __init__(self, owner):

super().__init__(owner)
Read the value from UITextField
self.username = owner.getComponent("UITextField").text
print(f"Welcome {self.username}!")

Invoked at input ended
def onValueChanged(self, val):

self.username = val
print(f"Welcome back {self.username}!")

UIButton

The UIButton component implement a button in GUI, which responds to a click from the user and is used to initiate
or confirm an action.

The Inspector properties are as below:

1.7. Graphical User Interface 37

Indi Games Engine, Release 0.0.1

Property Function
Inteactable Ability to receive events using Script
Transition Mode The transition between button states:

• Color Tint
• Sprite Swap

Image Background image
Normal Color/sprite of the Normal state
Pressed Color/sprite of the Pressed state
Selected Color/sprite of the Selected state
Disabled Color/sprite of the Disabled state
Fade Duration Transition Duration
Color Diffuse color
Sprite Type The Sprite type, can be:

• Simple: simple Sprite
• Sliced: 9-slices sprite

Border Left Border left percentage
Border Right Border right percentage
Border Top Border top percentage
Border Bottom Border bottom percentage

The action can be controlled using Script, which onClick callback like below:

from igeScene import Script

class BtnNoAds(Script):
def __init__(self, owner):

(continues on next page)

38 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

super().__init__(owner)

def onClick(self):
print("NoAds Button Clicked, process purchasing...")

UISlider

The UISlider allows user to select a numeric value from a range by dragging the mouse.

The Inspector properties are as below:

1.7. Graphical User Interface 39

Indi Games Engine, Release 0.0.1

Property Function
Inteactable Ability to receive events using Script
Normal Color of the Normal state
Pressed Color of the Pressed state
Disabled Color of the Disabled state
Fade Duration Transition Duration
Direction Slider direction

• Left To Right
• Right To Left
• Bottom To Top
• Top To Bottom

Min Min value
Max Max value
Value Current value
Whole Numbers Constrained value to integer number when checked

To handle value changed event, add this code to Script:

from igeScene import Script

class VolumeSlider(Script):
def __init__(self, owner):

super().__init__(owner)

def onValueChanged(self, val):
self.volume = val

UIScrollView

An UIScrollView can be used to scroll the content that takes up a lot of space and needs to be displayed in a small
area. It is usually combined with an UIMask in order to create a scroll view, and with one or two UIScrollBar that
can be dragged to scroll horizontally or vertically.

The Inspector properties are as below:

Property Function
Inteactable Ability to receive events using Script
Background Background image
Sprite Type Sprite type, either Simple or Sliced
Color Diffuse color
Horizontal Enable/disable horizontal scrollbar reference
Vertical Enable/disable vertical scrollbar reference
Move Type Movement type, either Claimed or Elastic
Elasticity The amount of bounce used in the elasticity mode
Elastic Extra The extra boundary allowed in Elastic mode.
Inertia Allow content to move after pointer releasing
Deceleration Rate Determines how quickly the contents stop moving

To support UIScrollView implement, the UIScrollBar is introduced to allow the user to scroll the view using drag
handler.

40 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.7. Graphical User Interface 41

Indi Games Engine, Release 0.0.1

Property Function
Inteactable Ability to receive events using Script
Background Background image
Sprite Type Sprite type, either Simple or Sliced
Color Diffuse color
Normal Color Color of the handler in normal state
Pressed Color Color of the handler in dragging state
Disabled Color Color of the handler in disabled state
Fade Duration Fading duration, in second
Direction Dragging direction

• Left To Right
• Right To Left
• Bottom To Top
• Top To Bottom

Value Current value
Size Handler size

To handle value changed event, add this code to Script:

from igeScene import Script

class HScrollBar(Script):
def __init__(self, owner):

(continues on next page)

42 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

super().__init__(owner)

def onValueChanged(self, val):
self.position = val

1.8 Audio

Indigames engine supports playing sounds in 3D space. Sounds are emitted by objects (sources) and heard by receivers
(listeners).

1.8.1 AudioSource

The AudioSource is used to play an audio track, at the position of the object it is attached to, in 3D space.

Indigames engine supports playing .ogg, .wav, .mp3, .mp4 formats.

1.8. Audio 43

Indi Games Engine, Release 0.0.1

Property Function
AutoPlay Whether auto play when loaded
Stream Should stream audio or preload to memory
Single Only one instance of this should play at the same time
Loop Enable this to make the Audio track loop
Track Audio track
Volume Volume at a distance of one meter from the AudioLis-

tener
Pan Panning value: -1 is Left, 0 is Center, 1 is Right
Min Distance Audio source min distance: distance < min means max

volume
Max Distance Audio source max distance: distance > max means zero

volume
Velocity Audio source velocity
Attenuation Model Attenuation model:

• NO ATTENUATION
• INVERSE DISTANCE
• LINEAR DISTANCE
• EXPONENTIAL DISTANCE

Attenuation Factor Attenuation rolloff factor
Doppler Factor Factor to reduce or enhance doppler effect

Refer to AudioSource API for usage within Python Script.

1.8.2 AudioListener

The AudioListener receives input from AudioSource in the scene and plays sounds through the computer speakers. It’s
usually attached to the main camera.

The audio system will play through only one listener at the same time, which is fisrt enabled AudioListener available.

Property Function
Enable Enable/disable the audio listener

Refer to AudioListener API for usage of AudioListener component within Python Script.

44 Chapter 1. Contents

_static/html/igeScene.html#igeScene.AudioSource
_static/html/igeScene.html#igeScene.AudioListener

Indi Games Engine, Release 0.0.1

1.8.3 AudioManager

The AudioManager is automatically created and attached to the root object, to have the global setting of the Audio
system.

Property Function
Global Volume Global volume of audio system

The AudioManager properties also can be controlled using Python Script. Refer to AudioManager Document for more
details.

1.9 Physic

IGE built-in 3D physics engine is an integration of the Bullet Physic, which is a 3D physic engine.

1.9.1 Rigidbody

In physics simulation, rigid bodies enable physics-based behaviour such as movement, gravity, and collision. A
Rigidbody is the main component that enables physical behaviour for a game object. With a Rigidbody attached,
the object will immediately respond to gravity. If one or more Collider components are also added, the game object
is moved by incoming collisions.

Property Function
CCD Enable/disable Continous Collision Detection mode
Kinematic Set Rigidbody to Kinematic or Dynamic mode
Trigger Enable trigger collision events
ActiveState Set activation state
CollisionGroup Collision group value
CollisionMask Collision mask value
Mass The mass of the object (in kilograms by default).
Friction Friction value
Restitution Restitution value (aka bounciness value)
LinearVelocity Linear velocity
LinearFactor Linear factor
LinearSleepThreshold Linear sleeping threshold
AngularVelocity Angular velocity
AngularFactor Angular factor
AngularSleepThreshold Angular sleeping threshold
PositionOffset Position offset (adjust the center of the physic object)
Constraints List of constraints applied in Rigidbody

Note: If the game object contains Rigidbody component, it’s Transform will be controlled by the Rigidbody. Thus, to

1.9. Physic 45

_static/html/igeScene.html#igeScene.AudioManager

Indi Games Engine, Release 0.0.1

46 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

change the transform just apply force or torque to the Rigidbody by using Python Script.

Note: When Trigger is enabled, use Python Script to receive triggered events. Refer to Rigidbody API for more
details.

1.9.2 Collision

To configure collision between game objects, you need to use Colliders. Colliders define the shape of the game object
for the purposes of physical collisions.

BoxCollider

The BoxCollider is a basic cuboid-shaped collision primitive, which are useful for items such as crates, chests, or
floors using thin boxes. It can also be used to create complex collision shape using CompoundCollider component.

1.9. Physic 47

_static/html/igeScene.html#igeScene.Rigidbody

Indi Games Engine, Release 0.0.1

Property Function
Size Size of the collider in X, Y, Z direction
Margin Collision margin

Note: Collision margin is used to optimize physic calculation, should keep it larger than 0.

SphereCollider

The SphereCollider is a basic sphere-shaped collision primitive.

Property Function
Radius The radius of the sphere shape
Margin Collision margin

48 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

CapsuleColider

The CapsuleCollider is made of two half-spheres joined together by a cylinder, to create a capsule primitive shape.

Property Function
Height The total height of the collider
Radius The radius of the collider width
Margin Collision margin

1.9. Physic 49

Indi Games Engine, Release 0.0.1

CompoundCollider

Compound colliders approximate the shape of an object while keeping a low processor overhead, by combining prim-
itive colliders of the child objects. When you create a compound collider like this, you should only use one Rigidbody
component, placed on the owner object in the hierarchy.

Note: CompoundCollider do not work with child objects which contains other CompoundCollider or MeshCollider.

Note: Should have only one Rigidbody attached to the whole hierarchy which the root object contains both Com-
poundCollider and Rigidbody. Otherwise, the simulation may not work as designed.

50 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

MeshCollider

The MeshCollider create Collider from meshes in FigureComponent. It is more accurate for collision detection
than using primitives colliders.

Property Function
ConvexHull Create and convex hull from mesh
TriangleMesh Use the triangle mesh
Margin Collision margin

Note: Using MeshCollider results in higher processing overhead than primitive colliders, so it is best to use Mesh-
Colliders sparingly.

Note: Using TriangleMesh is only allowed if the Rigidbody is Kinematic.

1.9. Physic 51

Indi Games Engine, Release 0.0.1

1.9.3 Constraints

A constraint is used to connect a Rigidbody to another Rigidbody or a fixed point in space. Constraints apply forces
that move rigid bodies, and limits restrict that movement.

FixedConstraint

FixedConstraint restricts an object’s movement to be dependent upon another object. The best scenarios for using
them are when you have objects that you want to easily break apart from each other, or connect two object’s movement
without parenting.

Property Function
Bodies Collision Enable/disable collision between linked bodies
Other body Other Rigidbody or Softbody component
Break Impulse The force that needs to be applied for this constraint to break.

HingeConstraint

The HingeConstraint groups together two Rigidbodies, constraining them to move like they are connected by a
hinge. It is perfect for doors, but can also be used to model chains, pendulums, etc. . .

52 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
Bodies Collision Enable/disable collision between linked bodies
Other body Other Rigidbody or Softbody component
Break Impulse The force that needs to be applied for this constraint to break
Anchor The position of the axis around which the body swings, in local space
Axis1 Rotation around Z
Axis2 Rotation around X
Lower Limit The lowest angle the rotation can go
Upper Limit The highest angle the rotation can go

SliderConstraint

A SliderConstraint allows a object controlled by Rigidbody to slide along a line in space, like sliding doors, for
example.

Property Function
Bodies Collision Enable/disable collision between linked bodies
Other body Other Rigidbody or Softbody component
Lower Limit Lower limit of the slider
Upper Limit Upper limit of the slider

SpringConstraint

The SpringConstraint joins two Rigidbodies together but allows the distance between them to change as though
they were connected by a spring.

Property Function
Bodies Collision Enable/disable collision between linked bodies
Other body Other Rigidbody or Softbody component
Enable Enable/disable spring on X, Y, Z axis
Stiffness Spring stiffness in X, Y, Z axis
Damping Amount that the spring is reduced when active
Lower Limit Lower limit of the distance range over which the spring will not apply any force
Upper Limit Upper limit of the distance range over which the spring will not apply any force

1.9. Physic 53

Indi Games Engine, Release 0.0.1

Dof6SpringConstraint

Dof6SpringConstraint incorporate all the functionality of the other constraint types and provide greater customiza-
tion.

Property Function
Bodies Collision Enable/disable collision between linked bodies
Other body Other Rigidbody or Softbody component
Lower Limit Lower limit of the axis
Upper Limit Upper limit of the axis
Target velocity Target velocity
Bounce Bounciness
Enable Spring Enable/disable spring
Stiffness Spring stiffness value
Damping Spring damping value
Enable Motor Enable/disable motor
Max Motor Force Max motor force
Enable Servo Enable/disable Servo
Servo Target Servo target

The first 3 dof axis are linear axis, which represent translation of rigidbodies, and the latter 3 dof axis represent the
angular motion. Each axis can be either locked, free or limited.

For each axis:

• Lowerlimit == Upperlimit -> axis is locked.

• Lowerlimit > Upperlimit -> axis is free.

• Lowerlimit < Upperlimit -> axis is limted in this range.

Check Bullet Physic manual document for more information.

1.9.4 Softbody

The soft body dynamics provides rope, cloth simulation and volumetric soft bodies, on top of the existing rigid body dy-
namics. The Softbody component works with FigureComponent, it manipulates Figure meshes to simulate deformable
objects like cloth, fluid, jelly,. . .

Property Function
CCD Enable/disable Continous Collision Detection mode
Kinematic [Ignored] Softbody is Dynamic object as alway.
Trigger Enable trigger collision events
ActiveState Set activation state
CollisionGroup Collision group value
CollisionMask Collision mask value
Mass The mass of the object (in kilograms by default).
Friction Friction value
Restitution Restitution value (aka bounciness value)
LinearVelocity Linear velocity
LinearFactor Linear factor
LinearSleepThreshold Linear sleeping threshold
AngularVelocity Angular velocity

continues on next page

54 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Table 2 – continued from previous page
Property Function
AngularFactor Angular factor
AngularSleepThreshold Angular sleeping threshold
PositionOffset [Ignored] Use mesh data without offset
SelfCollision Enable/disable collision between parts of the shape
SoftCollision Enable/disable soft collision
SpringStiffness Spring stiffness value
RestLengthScale Scale resting length of all springs
NumIterations Positions solver iterations (pIterations)
SleepThreshold Sleeping threshold
GravityFactor Gravity factor
VelocityFactor Velocities correction factor (kVCF)
DampingCoeff Damping coefficient value (kDP)
PressureCoeff Pressure coefficient value (kPR)
VolumeConvCoeff Volume conversation coefficient [kVC]
FrictionCoeff Dynamic friction coefficient (kDF)
PoseMatchCoeff Pose matching coefficient (kMT)
RigidHardness Rigid contacts hardness (kCHR)
KineticHardness Kinetic contacts hardness (kKHR)
SoftHardness Soft contacts hardness (kSHR)
AnchorHardness Anchors hardness (kAHR)
AeroModel Aerodynamic model (default: V_Point)

• V_Point: Vertex normals are oriented toward ve-
locity

• V_TwoSided: Vertex normals are flipped to match
velocity

• V_TwoSidedLiftDrag: Vertex normals are flipped
to match velocity and lift and drag forces are ap-
plied.

• V_OneSided: Vertex normals are taken as it is
• F_TwoSided: Face normals are flipped to match

velocity
• F_TwoSidedLiftDrag: Face normals are flipped to

match velocity and lift and drag forces are applied
• F_OneSided: Face normals are taken as it is

WindVelocity Wind velocity for interaction with the air
Constraints List of constraints applied

Softbody also works with all type of Constraints, together with Rigidbodies or other Softbodies.

Check Bullet Physic manual document for more information.

1.9. Physic 55

Indi Games Engine, Release 0.0.1

56 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.9.5 PhysicManager

The PhysicManager is automatically created and attached to the root object, to have the global setting of the Physic
system.

Property Function
Deformable Enable/disable physic with Softbody simulation
Debug Show Physic debug
NumIterations Number of iterations per frame
NumSubsteps Number of substeps. If NumSubSteps > 0, interpolate motion between fixedTimeStep
TimeStep Fixed time step value (default: 1/60)
UpdateRatio Update ratio, useful to do slow motion effect
Gravity Global gravity value

Please refer to Bullet Physic Manual and Python API Document document for more details of Physic usage using IGE.

1.10 Navigation

The navigation system allows you to create characters that can intelligently move around the game world, using nav-
igation meshes that are created automatically from your Scene geometry. Dynamic obstacles allow you to alter the
navigation of the characters at runtime, while off-mesh links let you build specific actions like opening doors or jump-
ing down from a ledge.

IGE Navigation system implement Recast & Detour libraries which provide both navigation mesh contruction toolset
and path-finding toolkit.

1.10. Navigation 57

https://github.com/bulletphysics/bullet3/tree/master/docs
_static/html/igeScene.html#igeScene.PhysicManager
https://github.com/recastnavigation/recastnavigation

Indi Games Engine, Release 0.0.1

58 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.10. Navigation 59

Indi Games Engine, Release 0.0.1

1.10.1 NavMesh

NavMesh is a data structure which describes the walkable surfaces of the game world and allows to find path from one
walkable location to another in the game world. The data structure is built automatically from your level geometry.

NavMesh collects geometry from its child nodes that have been tagged with the Navigable component. By default the
Navigable component behaves recursively, unless the recursion is disabled.

The easiest way to make the whole scene participate in navigation mesh generation is to create the NavMesh component
to the scene root node, and Navigable to the game object that act as navigating routes.

The navigation mesh generation must be triggered manually by pressing “Build” button which canbe found in NavMesh
inspector window.

60 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
Debug Draw debug
Build Build NavMesh data
TileSize The width/height size of tile’s on the xz-plane
CellSize The xz-plane cell size to use for fields
CellHeight The y-axis cell size to use for fields
AgentHeight Agent height
AgentRadius Agent radius
AgenMaxClimb Maximum ledge height that is considered to still be

traversable
AgentMaxSlope The maximum slope that is considered walkable
RegionMinSize The minimum number of cells allowed to form isolated

island areas
RegionMergeSize Regions with span count smaller than this will be merged

with larger regions
EdgeMaxLength The maximum allowed length for contour edges along

the border of the mesh
EdgeMaxError The maximum distance a contour’s border edges should

deviate original contour
SampleDistance The sampling distance to use when generating the detail

mesh
SampleMaxError The maximum distance the detail mesh surface should

deviate from heightfield
Padding The bounding box padding to generate navigation data
PartitionType Partitioning type:

• Watershed: build distance fields and regions data
• Monotone: build monotone regions (faster but

less accurate)

Note: NavMesh does not support NavObstacle to be added dynamictically at runtime. So, it’s better to be used with
static geometry only.

1.10.2 DynamicNavMesh

DynamicNavMesh supports the addition and removal of dynamic obstacles. Using DynamicNavMesh has the trade-off
over traditional NavMesh is that it will cost almost twice the memory consumption. However, the addition and removal
of obstacles is significantly faster than partially rebuilding a NavMesh.

1.10. Navigation 61

Indi Games Engine, Release 0.0.1

62 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
Debug Draw debug
Build Build NavMesh data
TileSize The width/height size of tile’s on the xz-plane
CellSize The xz-plane cell size to use for fields
CellHeight The y-axis cell size to use for fields
AgentHeight Agent height
AgentRadius Agent radius
AgenMaxClimb Maximum ledge height that is considered to still be

traversable
AgentMaxSlope The maximum slope that is considered walkable
RegionMinSize The minimum number of cells allowed to form isolated

island areas
RegionMergeSize Regions with span count smaller than this will be merged

with larger regions
EdgeMaxLength The maximum allowed length for contour edges along

the border of the mesh
EdgeMaxError The maximum distance a contour’s border edges should

deviate original contour
SampleDistance The sampling distance to use when generating the detail

mesh
SampleMaxError The maximum distance the detail mesh surface should

deviate from heightfield
Padding The bounding box padding to generate navigation data
PartitionType Partitioning type:

• Watershed: build distance fields and regions data
• Monotone: build monotone regions (faster but

less accurate)

MaxObstacle Max number of obstacles allowed (lower is better)
MaxLayer Maximum number of layers that are allowed to be con-

structed

1.10.3 Navigable

Navigable is a Component which tags geometry for inclusion in the navigation mesh. Optionally auto-includes geom-
etry from child nodes.

Property Function
Recursive Whether geometry is collected from child nodes

1.10. Navigation 63

Indi Games Engine, Release 0.0.1

1.10.4 NavArea

NavArea is a utility to mark a region differentiate with others, and potential have different navigation cost to travel
through. It’s useful to predefine all type of areas, such as Ground, Water, Sand, Snow . . . as areaId, up to 64 different
area types. The areaId then assigned to NavArea component, to configure traversal cost for the agent to go through.

Property Function
ID Area Id, from 0 - 62

Navigation System supports different filters for each type of NavAgent, up to 16 types. For each agent type, the area
cost canbe configured separately, providing abilities to customize agent behaviors.

To configure area cost for each area, for each type of agent, use Python API Document, as below:

from igeScene import Script, NavAgentManager
from enum import Enum

class AgentType(Enum):
MC = 0
NPC = 1

class AreaType(Enum):
GROUND = 63
WATER = 0
SNOW = 1

class AgentManager(Script):
def __init__(self, owner):

super().__init__(owner)
self.navAgentManager = None

def onStart(self):
self.navAgentManager = owner.getComponent("NavAgentManager")
self.navAgentManager.setAreaCost(AgentType.MC, AreaType.GROUND, 1.0)
self.navAgentManager.setAreaCost(AgentType.MC, AreaType.WATER, 5.0)
self.navAgentManager.setAreaCost(AgentType.MC, AreaType.SNOW, 2.0)
self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.GROUND, 1.0)
self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.WATER, 100.0)
self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.SNOW, 2.0)

Note: For regions which are not marked using NavArea, it will have areaId set to 63, and areaCost set to 1, by default.

64 Chapter 1. Contents

_static/html/igeScene.html#igeScene.NavAgentManager

Indi Games Engine, Release 0.0.1

1.10.5 OffMeshLink

Off-Mesh Links are used to create paths crossing outside the walkable navigation mesh surface. For example, jumping
over a ditch or a fence, or opening a door before walking through it, can be all described as Off-mesh links.

To use OffMeshLink optimally, follow steps below:

1. First create two cylinders, scale to (0.1, 0.2, 0.1) to make it easier to work with them.

2. Move the first cylinder inside the first NavMesh surface.

3. Move the second cylinder inside the other NavMesh surface, at the location where the link should land.

4. Select the first cylinder and add an OffMeshLink component to it.

5. Drag the second cylinder from Hierarchy to the Endpoint in the Inspector.

If the path via the off-mesh link is shorter than via walking along the Navmesh, the off-mesh link will be used.

Property Function
Endpoint The endpoint object, which position is the landing position.
Bidirectional If enabled, the link can be traversed in either direction.
Radius Radius of the link, where the center point is object position.
Mask Off-Mesh link mask
AreaId Area Id, which pre-setup for traversal cost.

1.10.6 NavAgent

NavAgent components help you to create characters which avoid each other and obstacles while moving towards their
goal.

Property Function
SyncPosition Update position by NavAgentManager, or not
Radius The agent’s radius
Height The agent’s height
MaxAccel The agent’s max acceleration
MaxSpeed The agent’s max velocity
TargetPos Target position to travel to
FilterType The agent’s filter type
NavQuality The agent’s navigation quality
NavPushiness The agent’s navigation pushiness

1.10. Navigation 65

Indi Games Engine, Release 0.0.1

The NavAgent handles both the pathfinding and the movement control of a character. In your scripts, navigation can
be as simple as setting the desired destination point:

from igeScene import Script, NavAgent
import igeVmath as vmath

class MCAgent(Script):
def __init__(self, owner):

super().__init__(owner)
self.navAgent = None

def onStart(self):
self.navAgent = owner.getComponent("NavAgent")
self.navAgent.targetPosition = vmath.vec3(10, 10, 10)

1.10.7 NavObstacle

NavObstacle components can be used to describe obstacles the agents should avoid while navigating. For example the
agents should avoid physics controlled objects, such as crates and barrels while moving.

To do this, add NavObstacle component to the object, then configure it’s properties:

Property Function
Radius The obstacle’s radius
Height The obstacle’s height

Then the NavAgent will avoid the obstacle object while navigating, even if the object is moving around.

66 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Note: NavObstacle only works with DynamicNavMesh. It’s ignored if the scene use NavMesh instead.

1.10.8 NavAgentManager

NavAgentManager is used to control the navigating of all NavAgents in the Scene. It’s automatically created when
creating NavMesh or DynamicNavMesh, and usually added to the root object of the Scene.

Property Function
Max Agents Max number of agents
Max Agent Radius The agent’s max radius

NavAgentManager also provides useful functions to control the agents by using Python Script. Refer to Python API
Document for more information.

1.11 Particle System

IGE Particle system implements Effekseer, allows playing effects created with Effekseer on IGE Engine.

1.11.1 Effekseer Editor

Effekseer is a tool that allows easy creation of beautiful particle effects for games and movies.

Check the Effekseer Tutorial to learn how to work with Effekseer Editor.

Note: IGE Engine implements Effekseer 1.60c runtime, which supports loading effects produced by the Effekseer
version 1.6x.

1.11.2 Particle

Particle component is used to load and display Effekseer effect in IGE Engine. It canbe used both in 3D and UI objects.

To add particle effects to your project, follow steps below:

1. Create effect using Effekseer Editor, or download effect from sample repo.

2. Copy your effect files (.efk), textures, sounds, materials, etc. into <project>/effects folder.

3. Add Particle component to the game object.

4. Drag & drop the .efk file to the Inspector

5. Configure the effect parameters

1.11. Particle System 67

_static/html/igeScene.html#igeScene.NavAgentManager
_static/html/igeScene.html#igeScene.NavAgentManager
https://effekseer.github.io/en/index.html
https://effekseer.github.io/en/documentation.html

Indi Games Engine, Release 0.0.1

68 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Property Function
Effect Path to .efk file, inside effects folder
Loop Enable/disable loop
AutoDraw Auto play and draw particle when loaded
GroupMask Particle group mask, useful to control particles using Python Script.
Speed Playing speed
TimeScale Playing time scale, also affect displaying speed
TargetPos Target position (used by particle effect)
Parameters Particle parameters
Color Particle diffuse color

An example of using particle:

Note: In UI node, the effect may appear bigger because of scaling, just need to set the scale parameter to make it
reasonable.

1.11. Particle System 69

Indi Games Engine, Release 0.0.1

1.11.3 ParticleManager

ParticleManager is used to manage Particle instance and global configuration. It is automatically added to the root
object when a Particle is used.

Property Function
Culling Enable/disable particle culling
Culling World Size Culling world size
Culling Layers Number of culling layers
Max Particles Max number of particle intances
Number Threads Number of running threads

For more information about Particle System, refer to Effekseer Document, and Python API Document.

1.12 Platform Configuration

IGE Creator works on Windows and MacOS workstation. The engine supports building games for Windows, MacOS,
iOS, Android and WebGL platforms.

1.12.1 Dependencies

Windows Workstation

In order to work with IGE Engine on Windows machine, please make sure to install softwares below:

• Chocolatey installed from Chocolatey

• Python 3.9.x, 64 bit installed

• igeCore installed with ‘python -m pip install igeCore’

• Git installed

• CMake 3.18.x installed (‘choco install cmake –version=3.18.1’)

• Visual Studio 19 with C++ Desktop components is required for Windows runtime.

• Java SDK 11, Android Studio and Android SDK are required for Android runntime.

• MinGW (‘choco install mingw’) and Emscripten (‘choco install emscripten’) are required for WebGL runtime.

70 Chapter 1. Contents

https://github.com/effekseer/Effekseer
_static/html/igeScene.html#igeScene.ParticleManager
https://chocolatey.org/

Indi Games Engine, Release 0.0.1

Note: On Windows, igeCreator supports build for Windows, Android and WebGL platforms.

Note: Please remove Python 3.10 after installing emscripten, as support Python 3.10 is not yet ready with IGE.

MacOS Workstation

In order to work with IGE Engine on Windows machine, please make sure to install softwares below:

• Homebrew installed

• Python 3.9.x, 64 bit installed with ‘brew install python3.9’

• igeCore installed with ‘python3.9 -m pip install igeCore’

• Cocoa Pod installed (‘sudo gem install cocoapods’)

• XCode installed

• Git client installed

• Oracle Java SDK 11, Android Studio and Android SDK are required for Android runntime.

• Emscripten (‘brew install emscripten’) are required for WebGL runtime.

Note: The igeCreator runs on Intel-based MacOS computer only, Apple Silicon support is WIP.

Note: On macOS, igeCreator supports build for macOS, iOS, Android and WebGL platforms.

1.12.2 Build Menu

To start building for a specific platform, access the Menu -> Build as below:

1.12. Platform Configuration 71

Indi Games Engine, Release 0.0.1

1.12.3 Project Setting Panel

Generic Configuration

Property Function
Name Executable name
Label Icon label
VersionName Version came
VersionCode Version code
BuldleID iOS bundle ID, android package name
Orientation Orientation: portrait / landscape
StartScene Scene to start the game with.
Dependencies List of modules used by the game.

72 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Android Platform Settings

Property Function
RomDir Rom directory, default to ‘mobile’
ConfigDir Config directory, default to ‘config/android’
Archs Architecture, default to ‘armeabi-v7a;arm64-v8a’
MinSdkVersion Min Sdk Version
TargetSdkVersion Target SDK Version
Permissions List of required permissions
Features List of using features

iOS Platform Settings

Property Function
RomDir Rom directory, default to ‘mobile’
ConfigDir Config directory, default to ‘config/ios’
Archs Architecture, default to ‘arm64’
DeploymentTarget Deployment target, default to ‘11.0’
DeviceFamily Device family, default to ‘1,2’ which mean iPhone and iPad
DevelpomentTeamId Development team ID
CodeSignIdentity Code sigining type: iPhone Distribution / iPhone Development
ProvisioningProfile Provisioning profile, set to ‘Automatic’ for development build

1.12. Platform Configuration 73

Indi Games Engine, Release 0.0.1

1.13 Third-Person Shooter

Welcome to Indigames Game Engine tutorial series!

This tutorial will introduce how to work with IGE Engine to create a third-person shooter game.

Before starting, let make sure you have:

• IGE Engine: check Installation document if you haven’t have it installed.

• Tutorial Source Code: checkout ige-tutorials, branch 01-basic-scene github repo.

1.13.1 1. About Scene

A scene is an abstract collection of game objects, representing a part of the game’s world created by using the scene
editor.

IGE implements a scene structure using a Scene Object and Component system.

• The Scene Object manages the parent-child relationship of the Scene, and the spatial matrix transformation, so
that all objects canbe managed and placed in the scene.

• The Component system allows Scene Object to have a variety of advanced features, such as Graphic components,
Animation components, Light components, Audio components, and more.

The typical workflow of using Scene Object is to:

• Create a Scene Object

• Add Components

• Write Scripts that change the properties and behaviors of these Components

74 Chapter 1. Contents

https://github.com/indigames/ige-tutorials/tree/01-basic-scene

Indi Games Engine, Release 0.0.1

Create Object

To create a game object, right click on an item in the Hierarchy , select Create, then it will show Object Creation
Menu with many types of object.

Alternative, drag the assets to the Scene View, it will also create object with the type based on the file extension.

Add Components

To add a component to a scene object, select it in the Scene view or Hierarchy, then in the Inspector select Add
Component, it will show the Add Component Menu.

Creating scene object with Object Creation Menu or by dragging assets will add component related to the object
types.

Scripting

Indigames Game Engine allow writing Python Script to control the scene object behavior. The Script canbe attached
to an object using Script component, and canbe accesses using getComponent(<class_name>) from other scripts.

1.13.2 2. Scene Setup

Open The Scene

Open the project using igeCreator, you will see a screen similar to this:

1.13. Third-Person Shooter 75

Indi Games Engine, Release 0.0.1

76 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Scene Navigation

Try to navigate the Scene using Scene View controls:

Action Input
Rotate [Mouse] Drag Right Button
Zoom [Mouse] Scroll Middle Button
Move [Mouse] Drag Middle Button
Focus [Keyboard] Press F Key

Scene Management

Try adding new game object to make the environment more beautiful, by using Object Creation Menu and dragging
assets from figures folder.

Also, try to modify the environment by adjust objects’ position, rotation and scale values to change the environment
layout as per your preferences.

Save the Scene using Ctrl + S, or File -> Save Scene.

1.13.3 3. Background Music

To play an audio clip, we need to use AudioSource component, either by dragging the audio file to scene to create new
object with AudioSource attached, or just to add AudioSource component to an existing object. To make it simple,
select root object, add AudioSource component, then drag the audio/bgm.mp3 file to the inspector. The background
music should be play once loaded, and should be looped as well. To save memory, it can also be streamed.

Let’s add the background music to the Environment object, like as below:

Also, AudioListener is required to act as a listener in 3D space, it’s usually added to the active camera. So, let’s add
AudioListener to the Default Camera object:

Save the Scene, then press Play button, the background music should be played and looped during the playing session.

1.13.4 4. Character Movement

Checkout ige-tutorials, branch 02-character-movement github repo.

Add MC

The MC prefab is located in prefabs/MC.prefab folder. Add the MC to the scene by dragging the prefab file in the
Scene View.

In the Inspector, you can see the MC already have:

• Figure: using model from figures/characters/NoMan.dae

• Animator: using animator controller from animators/Player.anim

• CapsuleCollider and Rigidbody: Physic simulation

• Script: movement script located at scripts/PlayerMovement

1.13. Third-Person Shooter 77

https://github.com/indigames/ige-tutorials/tree/02-character-movement

Indi Games Engine, Release 0.0.1

78 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.13. Third-Person Shooter 79

Indi Games Engine, Release 0.0.1

80 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Character Animation

IGE Animation makes use of Animator Controller, which control the animation using State Machine defined in .anim
file.

Open animators/Player.anim by double clicking the file icon in AssetBrowser, the Animator Editor appears like
below:

Every animator controller implements internal state machine system, which consists at least Entry, Exit and Any
states. The Entry state help to configure the initial state of the animation. The Exit state is to end animation. And the
Any state is a helper state to simplify the state diagram.

The player has other three states: Idle, Move, Dead.

To decide what state to play next, the Parameters and Conditions can be used.

• Parameters: define global parameters and their values.

• Conditions: attached to each transition, with compare the parameters’ values which predefined threshold.

The animation transition happens when all conditions are meet, or HasExitTime checked and the ExitTime value
reached.

The animation is controllable using Python Script, by setting the parameters’ values at runtime.

1.13. Third-Person Shooter 81

Indi Games Engine, Release 0.0.1

Character Physic

In the Inspector, the character object includes a Capsule collider and a Ridgidbody. This is a dynamic object, thus
IsKinematic is set to false.

Note: Notice that, the movement along Y-Axis is fixed, by setting the second parameter of LinearFactor to zero.
Also, the rotation along X-Axis and Z-Axis is locked, by setting the first and the third parameters of AngularFactor
to zero.

82 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Character Movement Script

The PlayerMovement.py script is as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerMovement(Script):
def __init__(self, owner):

super().__init__(owner)
self.speed = 2.0
self._transform = None
self._rigidbody = None
self._animator = None
self._movement = vmath.vec3(0, 0, 0)
self._isWalking = False

def onStart(self):
self._transform = self.owner.getComponent("Transform")
self._rigidbody = self.owner.getComponent("Rigidbody")
self._animator = self.owner.getComponent("Animator")
self._movement = vmath.vec3(0, 0, 0)
self._isWalking = False

def onUpdate(self, dt):
h, v = [0, 0]
if Keyboard.isPressed(KeyCode.KEY_W) or Keyboard.isPressed(KeyCode.KEY_UP):

v = -1.0
if Keyboard.isPressed(KeyCode.KEY_S) or Keyboard.isPressed(KeyCode.KEY_DOWN):

v = 1.0
if Keyboard.isPressed(KeyCode.KEY_A) or Keyboard.isPressed(KeyCode.KEY_LEFT):

h = -1.0
if Keyboard.isPressed(KeyCode.KEY_D) or Keyboard.isPressed(KeyCode.KEY_RIGHT):

h = 1.0
if h != 0 or v != 0:

self._movement = vmath.vec3(h, 0, v)
self._movement.normalize()
self._movement = self._movement * self.speed * dt
newRotation = vmath.quat_look_rotation(self._movement, vmath.vec3(0.0, 1.0,␣

→˓0.0))
self._rigidbody.moveRotation(newRotation)
self._rigidbody.movePosition(self._transform.position + self._movement)
if not self._isWalking:

self._isWalking = True
self._animator.setValue("isWalking", self._isWalking)

elif self._isWalking:
self._isWalking = False
self._animator.setValue("isWalking", self._isWalking)

def onDestroy(self):
self._transform = None
self._rigidbody = None

(continues on next page)

1.13. Third-Person Shooter 83

Indi Games Engine, Release 0.0.1

(continued from previous page)

self._animator = None
self._playerHealth = None
self._movement = None

Click Play button, then in the playing mode, the main character can be controlled by pressing arrow keys or WASD
keys. The character also has collision with the houses and other objects in the scene.

1.13.5 5. Camera Setup

Checkout ige-tutorials, branch 03-camera-setup github repo.

Navigate to Default Camera object, add a Script component. Drag and drop scripts/CameraFollow.py from
AssetBrowser to the newly created Script. Lastly, drag and drop the NoMan from Hierarchy to target property,
then select Transform.

The CameraFollow.py script is as below:

from igeScene import Script
import igeVmath as vmath

class CameraFollow(Script):
def __init__(self, owner):

super().__init__(owner)
self.target = None
self.smoothing = 5.0
self._offset = vmath.vec3()

def onStart(self):
(continues on next page)

84 Chapter 1. Contents

https://github.com/indigames/ige-tutorials/tree/03-camera-setup

Indi Games Engine, Release 0.0.1

1.13. Third-Person Shooter 85

Indi Games Engine, Release 0.0.1

(continued from previous page)

if self.target is None:
self.target = self.owner.scene.findObjectByName("MC").getComponent("Transform

→˓")
if self.target is None:

return
self._offset = self.owner.transform.position - self.target.position

def onUpdate(self, dt):
targetCamPos = self.target.position + self._offset
self.owner.transform.position = vmath.lerp(self.smoothing * dt, self.owner.

→˓transform.position, targetCamPos)

def onDestroy(self):
self.target = None
self._offset = None

Save the scene, and after press Play, the camera will follow the main character while moving around.

86 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.13.6 6. Add Enemy

Checkout ige-tutorials, branch 04-enemy-setup github repo.

Like the MC, the Enemy prefab is added at prefabs/Enemy.prefab. Create an enemy by drag and drop the prefab
to the root node in the Hierarchy.

In the Inspector, the Enemy object contains:

• Figure: similar to MC, but the Diffuse Collor changed to Red instead of Blue.

• Animator: same as MC

• Rigidbody and Collider: same as MC

• NavAgent: use NavAgent to find and navigate the object in the map

• Script: EnemyMovement.py and EnemyHealth.py control the movement and heal of the enemy.

To enable NavAgent auto targeting, we also need to setup the NavMesh. The DynamicNavMesh component is added
to NavigableArea object, along with Navigable component.

The EnemyMovement.py script is as below:

from igeScene import Script
import igeVmath as vmath

class EnemyMovement(Script):
def __init__(self, owner):

super().__init__(owner)
self.player = None
self._transform = None
self._navAgent = None
self._rigidbody = None
self._playerTransform = None
self._playerHealth = None
self._enemyHealth = None
self._animator = None
self._isWalking = False

def onStart(self):
self._transform = self.owner.getComponent("Transform")
self._rigidbody = self.owner.getComponent("Rigidbody")
self._navAgent = self.owner.getComponent("NavAgent")
self._enemyHealth = self.owner.getComponent("EnemyHealth")
self._animator = self.owner.getComponent("Animator")
if self.player is None:

self.player = self.owner.scene.findObjectByName("MC")
if self.player is not None:

self._playerTransform = self.player.getComponent("Transform")
self._playerHealth = self.player.getComponent("PlayerHealth")

def onUpdate(self, dt):
if self._enemyHealth.hp > 0.0 and self._playerHealth.hp > 0.0:

self._navAgent.targetPosition = self._playerTransform.position
movement = self._playerTransform.position - self._transform.position
movement.normalize()
newRotation = vmath.quat_look_rotation(movement, vmath.vec3(0.0, 1.0, 0.0))

(continues on next page)

1.13. Third-Person Shooter 87

https://github.com/indigames/ige-tutorials/tree/04-enemy-setup

Indi Games Engine, Release 0.0.1

88 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

1.13. Third-Person Shooter 89

Indi Games Engine, Release 0.0.1

(continued from previous page)

self._rigidbody.moveRotation(newRotation)
if not self._isWalking:

self._isWalking = True
self._animator.setValue("isWalking", self._isWalking)

elif self._navAgent.hasTarget():
self._navAgent.resetTarget()
self._isWalking = False
self._animator.setValue("isWalking", self._isWalking)

def onDestroy(self):
self.player = None
self._transform = None
self._navAgent = None
self._rigidbody = None
self._playerTransform = None
self._playerHealth = None
self._enemyHealth = None
self._animator = None

The EnemyHealth.py script is as below:

from igeScene import Script

class EnemyHealth(Script):
def __init__(self, owner):

super().__init__(owner)
self.maxHp = 20.0
self.hp = 20.0
self.scoreValue = 10
self.sinkSpeed = 0.5
self.hurtSfx = None
self.deadSfx = None
self._transform = None
self._animator = None
self._navAgent = None
self._audio = None
self._rigidbody = None
self._isDead = False
self._timer = 0

def onStart(self):
self.hp = self.maxHp
self._isDead = False
self._transform = self.owner.getComponent("Transform")
self._animator = self.owner.getComponent("Animator")
self._navAgent = self.owner.getComponent("NavAgent")
self._audio = self.owner.getComponent("AudioSource")
self._rigidbody = self.owner.getComponent("Rigidbody")

def onUpdate(self, dt):
if self._isDead:

self._timer += dt
(continues on next page)

90 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

if self._timer >= 1.0:
self._transform.position += vmath.vec3(0, -1, 0) * self.sinkSpeed * dt
if (self._transform.position.y < -5.0):

self.owner.scene.removeObject(self.owner)

def takeDamage(self, amount):
self.hp -= amount
self._animator.setValue("hp", self.hp)
if self.hp <= 0.0:

self.dead()
else:

self._audio.path = self.hurtSfx
self._audio.play()

def dead(self):
if not self._isDead:

self._isDead = True
self._timer = 0.0
self._navAgent.enable = False
self._rigidbody.isKinematic = True
self._audio.path = self.deadSfx
self._audio.play()

def onDestroy(self):
self.hurtSfx = None
self.deadSfx = None
self._transform = None
self._animator = None
self._navAgent = None
self._audio = None
self._rigidbody = None

Click Play button, the Enemy will keep running toward the MC while he is moving around the map.

1.13.7 7. GUI & HUD

In this section, we will add a health indicator and display score in the screen.

Add Score

Add SCORE: label:

• Right-click the UI node in Hierarchy, select Create -> GUI -> UIText, it will create new object with UIText
component

• Select the new object, rename it as txtScore.

• In the Inspector, change Text to SCORE:.

• Go to AssetBrowser, open fonts/road_font, then drag the road_font.pybm to the Font section in Inspector.

• Change the Size to 24.

• Adjust the Anchor and Position like below:

1.13. Third-Person Shooter 91

Indi Games Engine, Release 0.0.1

92 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Add score value textfield:

• Select txtScore, right-click and select Create -> GUI -> UIText to create new textfield for score value.

• Rename the new object as txtScoreValue

• Adjust the Inspector elements like image below:

Now the screen should show SCORE: 0 at the middle-top of the screen. We will show the real score in the next tutorial.

Add Health Bar

We can add HealthUI object to group the UI elements related to player health:

• Right-click the Canvas object, select Create -> New Object

• Name the new object as HealthUI.

• Adjust the RectTransform so that it will span the whole screen.

We add heart icon to indicate the player health:

• Right-click the HealthUI object, select Create -> GUI -> UIImage

1.13. Third-Person Shooter 93

Indi Games Engine, Release 0.0.1

• Name the new object as Heart

• Drag sprites/heart.png from AssetBrowser to the Inspector

• Adjust the RectTransform to pin the icon to the top-left of the screen

We also add a Health Bar, by using UISlider component:

• Right-click the HealthUI object, select Create -> GUI -> UISlider

• Name the new object as HealthSlider

• The health slider is changed automatically, so we need to remove the handle, by delete handleArea child object.

• Change the background color to light-red color, by selecting background, then adjust color accordingly.

• Change the fill color to light-green, by selecting fillArea -> fill object, then adjust the color to light-green

• Select the HealthSlider, then adjust the RectTransform like below:

To provide graphical feedback when player is being attacked, we add a splash effect, by using UIImage component.

• Right-click the HealthUI object, select Create -> GUI -> UIImage

• Name the new object as imgDamaged

94 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

• Drag sprites/white.png from AssetBrowser to the Inspector

• Adjust color alpha to 0

• Adjust the RectTransform to span the image full screen

This should be enough to display player health and score to the screen.

Checkout ige-tutorials, branch 05-gui-hud github repo.

1.13. Third-Person Shooter 95

https://github.com/indigames/ige-tutorials/tree/05-gui-hud

Indi Games Engine, Release 0.0.1

1.13.8 8. MC Health

In this section, we will make the enemy attack, and adjust the player health on the UI accordingly.

Player Health

• In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

• In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter
PlayerHealth in the textfield.

The PlayerHealth.py is as below:

import igeVmath as vmath
from igeScene import Script

class PlayerHealth(Script):
def __init__(self, owner):

super().__init__(owner)
self.maxHp = 100.0
self.hp = 100.0
self.healthSlider = None
self.damageImage = None
self.flashSpeed = 5.0
self.deadSfx = None
self.hurtSfx = None
self._animator = None
self._audio = None
self._damaged = False

def onStart(self):
self._animator = self.owner.getComponent("Animator")
self._audio = self.owner.getComponent("AudioSource")
self.hp = self.maxHp

def onUpdate(self, dt):
if self._damaged:

self.damageImage.color = vmath.vec4(1.0, 0.0, 0.0, 0.3)
else:

self.damageImage.color = vmath.lerp(self.flashSpeed * dt, self.damageImage.
→˓color, vmath.vec4(1.0, 0.0, 0.0, 0.0))

self._damaged = False

def takeDamage(self, amount):
self._damaged = True
self.hp -= amount
self._animator.setValue("hp", self.hp)
self.healthSlider.value = self.hp
if self.hp <= 0:

self._audio.path = self.deadSfx
self._audio.play()
self.owner.getComponent("PlayerMovement").enable = False
self.owner.getComponent("PlayerShoot").enable = False
self.owner.getComponent("PlayerHealth").enable = False

(continues on next page)

96 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

else:
self._audio.path = self.hurtSfx
self._audio.play()

def onDestroy(self):
self.healthSlider = None
self.damageImage = None
self.deadSfx = None
self.hurtSfx = None
self._animator = None
self._audio = None

• Select MC object, create new Script component, drag scripts/PlayerHealth.py to the path.

• Drag HealthSlider to the Inspector, in healthSlider textfield, select UISlider

• Drag imgDamaged to the Inspector, in damageImage textfield, select UIImage

• Drag audio/player_hurt.wav and audio/player_death.wav audio to the inspector in hurtSfx and
deadSfx textfields.

• Save the prefab, select reload prefab when asked.

Enemy Attack

• In AssetBrowser, open prefabs/Enemy.prefab by double-clicking it.

• In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter
EnemyAttack in the textfield.

• Select Enemy object, create new Script component, drag scripts/EnemyAttack.py to the path.

• Save the prefab, select reload prefab when asked.

The EnemyAttack.py is as below:

from igeScene import Script

class EnemyAttack(Script):
def __init__(self, owner):

super().__init__(owner)
self.timeBetweenAttack = 1.0
self.attackDamage = 10
self._animator = None
self._player = None
self._playerHealth = None
self._enemyHealth = None
self._playerInRange = False
self._timer = 0.0

def onStart(self):
self._player = self.owner.scene.findObjectByName("MC")
if self._player is not None:

self._playerHealth = self._player.getComponent("PlayerHealth")
self._enemyHealth = self.owner.getComponent("EnemyHealth")

(continues on next page)

1.13. Third-Person Shooter 97

Indi Games Engine, Release 0.0.1

(continued from previous page)

self._animator = self.owner.getComponent("Animator")

def onTriggerStart(self, other):
if other == self._player:

self._playerInRange = True

def onTriggerStop(self, other):
if other == self._player:

self._playerInRange = False

def onUpdate(self, dt):
self._timer += dt
if self._timer >= self.timeBetweenAttack and self._playerInRange and self._

→˓enemyHealth.hp > 0:
self.attack()

def attack(self):
self._timer = 0.0
if self._playerHealth.hp > 0:

self._playerHealth.takeDamage(self.attackDamage)

def onDestroy(self):
self._animator = None
self._player = None
self._playerHealth = None
self._enemyHealth = None

Save the scene, press Play button, now if player is near to the enemy, he will be attacked and his health will be updated
in HUD.

98 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Checkout ige-tutorials, branch 06-player-health github repo.

1.13.9 9. MC Shooting

In this section, we will equip the MC with a gun and allow him to shoot enemy.

Add Gun to MC

• In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

• Select MC object, right-click, select New Object, rename it to Gun.

• Select Gun, add Figure component, drag figures/weapons/Gun.dae to Path.

• Adjust Transform component as below:

• Save the prefab.

Add Fire Particle

• In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

• Select Gun, right-click, select New Object, rename it to fxShoot.

• Select fxShoot, create Particle component, drag effects/shot_effect/shot_eff.efk to Effect.

• Adjust Transform component as below:

• Save the prefab.

Add Smoke Particle

• In AssetBrowser, open prefabs/Enemy.prefab by double-clicking it.

• Select Enemy, right-click, select New Object, rename it to fxSmoke.

• Select fxShoot, create Particle component, drag effects/smoke_effect/smoke.efk to Effect.

• Adjust Transform component as below:

• Save the prefab.

1.13. Third-Person Shooter 99

https://github.com/indigames/ige-tutorials/tree/06-player-health

Indi Games Engine, Release 0.0.1

100 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Player Shooting

• In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

• In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter
PlayerShoot in the textfield.

The PlayerHealth.py is as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerShoot(Script):
def __init__(self, owner):

super().__init__(owner)
self.attackDamage = 20.0
self.attackRange = 100.0
self.timeBetweenAttack = 0.15
self.shootSfx = None
self.shootFx = None
self._transform = None
self._audio = None
self._physic = None
self._playerHealth = None
self._timer = 0.0

def onStart(self):
self._transform = self.owner.getComponent("Transform")
self._audio = self.owner.getComponent("AudioSource")
self._physic = self.owner.scene.root.getComponent("PhysicManager")
self._playerHealth = self.owner.getComponent("PlayerHealth")

def onUpdate(self, dt):
self._timer += dt
if self._playerHealth.hp > 0 and Keyboard.isPressed(KeyCode.KEY_SPACE):

self.shoot()

def shoot(self):
if self._timer < self.timeBetweenAttack:

return
self._timer = 0.0
self._audio.path = self.shootSfx
self._audio.play()
self.shootFx.play()

hit = self._physic.rayTestClosest(self._transform.position, self._transform.
→˓forward * self.attackRange)

if hit is not None:
hitObject = hit["hitObject"]
hitPosition = hit["hitPosition"]
hitPosition.y += 0.3
enemyHealth = hitObject.getComponent("EnemyHealth")
if enemyHealth is not None and enemyHealth.hp > 0.0:

(continues on next page)

1.13. Third-Person Shooter 101

Indi Games Engine, Release 0.0.1

(continued from previous page)

enemyHealth.takeDamage(self.attackDamage)
smokeFx = hitObject.findChildByName("fxSmoke")
if smokeFx is not None:

smokeFx.getComponent("Transform").position = hitPosition
smokeFx.getComponent("Particle").play()

def onDestroy(self):
self.shootSfx = None
self.shootFx = None
self._transform = None
self._audio = None
self._physic = None
self._playerHealth = None

• Select MC object, add Script component, drag scripts/PlayerShoot.py to Path.

• Drag fxShoot to the Inspector, in the shootFx textfield

• Drag audio/player_shoot.wav to the shootSfx in the inspector.

• Save the prefab.

Update Score

We need to add ScoreManager script to the root object to manage game score:

• In AssetBrowser, navigate to scripts, create new script called ScoreManager.py.

The ScoreManager.py is as simple as below:

from igeScene import Script

class ScoreManager(Script):
def __init__(self, owner):

super().__init__(owner)
self.scoreTxt = None
self._score = 0

def onStart(self):
self._score = 0

def score(self, value):
self._score += value
if self.scoreTxt is not None:

self.scoreTxt.text = str(self._score)

def onDestroy(self):
self.scoreTxt = None

• Select main object, attach ScoreManager.py to it.

• Drag txtScoreValue from the UI to scoreTxt in the Inspector.

• Save the scene.

To add score, update EnemyHealth.py as below:

102 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

from igeScene import Script
import igeVmath as vmath

class EnemyHealth(Script):
def __init__(self, owner):

super().__init__(owner)
self.maxHp = 20.0
self.hp = 20.0
self.scoreValue = 10
self.sinkSpeed = 0.5
self.hurtSfx = None
self.deadSfx = None
self._transform = None
self._animator = None
self._navAgent = None
self._audio = None
self._rigidbody = None
self._scoreManager = None
self._isDead = False
self._timer = 0

def onStart(self):
self.hp = self.maxHp
self._isDead = False
self._transform = self.owner.getComponent("Transform")
self._animator = self.owner.getComponent("Animator")
self._navAgent = self.owner.getComponent("NavAgent")
self._audio = self.owner.getComponent("AudioSource")
self._rigidbody = self.owner.getComponent("Rigidbody")
self._scoreManager = self.owner.scene.root.getComponent("ScoreManager")

def onUpdate(self, dt):
if self._isDead:

self._timer += dt
if self._timer >= 1.0:

self._transform.position += vmath.vec3(0, -1, 0) * self.sinkSpeed * dt
if (self._transform.position.y < -5.0):

self.owner.scene.removeObject(self.owner)

def takeDamage(self, amount):
self.hp -= amount
self._animator.setValue("hp", self.hp)
if self.hp <= 0.0:

self.dead()
else:

self._audio.path = self.hurtSfx
self._audio.play()

def dead(self):
if not self._isDead:

self._isDead = True
self._timer = 0.0
self._navAgent.enable = False

(continues on next page)

1.13. Third-Person Shooter 103

Indi Games Engine, Release 0.0.1

(continued from previous page)

self._rigidbody.isKinematic = True
self._audio.path = self.deadSfx
self._audio.play()
self._scoreManager.score(self.scoreValue)

def onDestroy(self):
self.hurtSfx = None
self.deadSfx = None
self._transform = None
self._animator = None
self._navAgent = None
self._audio = None
self._rigidbody = None
self._scoreManager = None
self._timer = None

Press Play button, the MC now can shoot enemy by pressing SPACE. Once enemy dead, the score will be added and
updated in the UI.

Checkout ige-tutorials, branch 07-player-shooting github repo.

104 Chapter 1. Contents

https://github.com/indigames/ige-tutorials/tree/07-player-shooting

Indi Games Engine, Release 0.0.1

1.13.10 10. Game Over

In this section, we will spawn enemy around the map, and calculate condition to make the game over, as well as provide
ability to replay the game.

Game Over UI

The Game Over UI is as simple as below:

We display a layer with transparent red color, on top of that is Game Over text, and a Replay button to allow player to
replay. In the AssetBrowser, add new script called ReplayBtn.py in scripts/gui folder, then attach the script to the
Replay button.

Spawning Enemy

We add some spawning point in the map, for examples at the Restaurant and in the Hut object. We mark the point
by adding dummy objects named SpawnPoint_xx.

Next, we create EnemyManager script, and attach it to the root node of the scene.

The EnemyManager.py is as below:

from igeScene import Script
import random

class EnemyManager(Script):
def __init__(self, owner):

super().__init__(owner)
self.player = None
self.enemyPrefab = None
self.spawnTime = 3.0
self.spawnPoint = None
self.spawnPoint2 = None

(continues on next page)

1.13. Third-Person Shooter 105

Indi Games Engine, Release 0.0.1

(continued from previous page)

self.spawnPoint3 = None
self._playerHealth = None
self._spawnTimer = 0.0
self._spawnPoints = None
self._enemyId = 0

def onStart(self):
self._enemyId = 0
if self.player is None:

self.player = self.owner.scene.findObjectByName("MC")
if self.player is None:
return

self._playerHealth = self.player.getComponent("PlayerHealth")
self._spawnPoints = []
if self.spawnPoint is not None:

self._spawnPoints.append(self.spawnPoint)
if self.spawnPoint2 is not None:

self._spawnPoints.append(self.spawnPoint2)
if self.spawnPoint3 is not None:

self._spawnPoints.append(self.spawnPoint3)

def onUpdate(self, dt):
self._spawnTimer += dt
if self._spawnTimer >= self.spawnTime:

self.spawn()

def spawn(self):
if self._playerHealth.hp <= 0:

return
spawnIndex = random.randrange(0, len(self._spawnPoints))
self.owner.scene.loadPrefab(self.enemyPrefab, f"Enemy_{self._enemyId}", self.owner.

→˓scene.root, self._spawnPoints[spawnIndex].position)
self._enemyId += 1
self._spawnTimer = 0.0

def onDestroy(self):
self.player = None
self.enemyPrefab = None
self.spawnPoint = None
self.spawnPoint2 = None
self.spawnPoint3 = None
self._playerHealth = None
self._spawnPoints = None

After attaching the script:

• Drag MC to player textbox

• Drag prefabs/Enemy.prefab from AssetBrowser to enemyPrefab textbox

• Drag SpawnPoint_xx to the spawnPointxx textbox

• Save the scene.

106 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

Game Over Script

Create new script named GameManager.py and attach to the root object.

The content of GameManager.py is as below:

from igeScene import Script, SceneManager

class GameManager(Script):
def __init__(self, owner):

super().__init__(owner)
self._gameOverUI = None

def onStart(self):
self._gameOverUI = self.owner.scene.findObjectByName("GameOverUI")
self._gameOverUI.active = False

def play(self):
SceneManager.getInstance().reloadScene()

def gameOver(self):
self._gameOverUI.active = True

def onDestroy(self):
self._gameOverUI = None

When MC’s health fall below zero, the Game Over screen should appear. Edit PlayerHealth.py as below:

from igeScene import Script, SceneManager
import igeVmath as vmath
from igeScene import Script

class PlayerHealth(Script):
def __init__(self, owner):

super().__init__(owner)
self.maxHp = 100.0
self.hp = 100.0
self.healthSlider = None
self.damageImage = None
self.flashSpeed = 5.0
self.deadSfx = None
self.hurtSfx = None
self._animator = None
self._audio = None
self._damaged = False

def onStart(self):
self._animator = self.owner.getComponent("Animator")
self._audio = self.owner.getComponent("AudioSource")
self.hp = self.maxHp

def onUpdate(self, dt):
if self._damaged:

self.damageImage.color = vmath.vec4(1.0, 0.0, 0.0, 0.3)
(continues on next page)

1.13. Third-Person Shooter 107

Indi Games Engine, Release 0.0.1

(continued from previous page)

else:
self.damageImage.color = vmath.lerp(self.flashSpeed * dt, self.damageImage.

→˓color, vmath.vec4(1.0, 0.0, 0.0, 0.0))
self._damaged = False

def takeDamage(self, amount):
self._damaged = True
self.hp -= amount
self._animator.setValue("hp", self.hp)
self.healthSlider.value = self.hp
if self.hp <= 0:

self._audio.path = self.deadSfx
self._audio.play()
self.owner.getComponent("PlayerMovement").enable = False
self.owner.getComponent("PlayerShoot").enable = False
self.owner.getComponent("PlayerHealth").enable = False
self.owner.scene.root.getComponent("GameManager").gameOver()

else:
self._audio.path = self.hurtSfx
self._audio.play()

def onDestroy(self):
self.healthSlider = None
self.damageImage = None
self.deadSfx = None
self.hurtSfx = None
self._animator = None
self._audio = None

Replay The Game

For this tutorial, replay the game is as simple as reload the scene from the beginning.

Edit ReplayBtn.py as below:

from igeScene import Script

class ReplayBtn(Script):
def __init__(self, owner):

super().__init__(owner)

def onUpdate(self, dt):
pass

def onClick(self):
self.owner.scene.root.getComponent("GameManager").play()

Play the game now, when being attacked by enemy, if the HC’s health fall below zero, the Game Over screen will be
shown, and user will be able to replay the game by press Replay button.

Checkout ige-tutorials, branch 08-game-over github repo.

108 Chapter 1. Contents

https://github.com/indigames/ige-tutorials/tree/08-game-over

Indi Games Engine, Release 0.0.1

1.13.11 11. Mobile Control

On mobile device, access to Keyboard is very limited. We should add UI elements to move the player, and allow
shooting with touch screen.

Shoot Button

• Select Canvas object, add new UIButton, name it as btnShoot.

• In the Inspector, change the Transition Mode to Sprite Swap.

• Set the Normal state to sprites/joystick/joystick_p.png

• Set press Pressed state to sprites/joystick/joystick.png

• Create new Script in scripts/gui, named ShootBtn.py, then attach to the btnShoot object.

• Adjust the RectTransform as below:

The content of ShootBtn.py is as below:

from igeScene import Script

class ShootBtn(Script):
def __init__(self, owner):

super().__init__(owner)
self.player = None
self._playerShoot = None

def onStart(self):
if self.player is None:

(continues on next page)

1.13. Third-Person Shooter 109

Indi Games Engine, Release 0.0.1

(continued from previous page)

if self.player = self.owner.scene.findObjectByName("MC")
if self.player is not None:

self._playerShoot = self.player.getComponent("PlayerShoot")

def onClick(self):
if self._playerShoot is not None:

self._playerShoot.shoot()

def onDestroy(self):
self.player = None
self._playerShoot = None

Movement JoyStick

There is no JoyStick component, but we can make it using UIImage.

• Select Canvas, add new UIImage, name it as jsMove.

• In the Inspector, drag sprites/joystick/joystick.png to Path.

• Adjust the size to 96 x 96 pixels.

• Adjust the RectTransform as below:

• Select jsMove, add new UIImage, name it as jsMoveCtrl.

• In the Inspector, drag sprites/joystick/joystick_p.png to Path.

• Adjust the size to 48 x 48 pixels.

• Create new Script in scripts/gui, named JoyStick.py:

from igeScene import Script
import igeVmath as vmath
from igeCore.input.touch import Touch

class JoyStick(Script):
def __init__(self, owner):

super().__init__(owner)
(continues on next page)

110 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

self.moveCtrl = None
self._value = vmath.vec2(0, 0)
self._maxSize = 0
self._pressed = False
self._pressedPosition = vmath.vec3(0, 1, 0)
self._fingerId = -1
self._transform = None
self._scene = None

def onStart(self):
self._transform = self.owner.getComponent("RectTransform")
self._maxSize = max(self._transform.size.x, self._transform.size.y) * 0.5
self._scene = self.owner.scene
self._value = vmath.vec2(0, 0)
if self.moveCtrl is not None:

self._moveTransform = self.moveCtrl.getComponent("RectTransform")

def clamp(self, n, smallest, largest):
return max(smallest, min(n, largest))

def onUpdate(self, dt):
for i in range(0, Touch.count()):

pos = Touch.getPosition(i)
if Touch.isPressed(i):

hit = self._scene.raycastUI(pos)
if hit["hitObject"].name == self.owner.name or hit["hitObject"].name ==␣

→˓self.moveCtrl.name:
self._pressed = True
self._pressedPosition = hit["hitPosition"]
self._pressedPosition.z = 0
self._value = vmath.vec2(0, 0)
self._fingerId = Touch.getId(i)

elif Touch.isMoved(i):
if self._pressed and self._fingerId == Touch.getId(i):

hit = self._scene.raycastUI(pos)
newPos = hit["hitPosition"]

(continues on next page)

1.13. Third-Person Shooter 111

Indi Games Engine, Release 0.0.1

(continued from previous page)

newPos.z = 0
diff = hit["hitPosition"] - self._pressedPosition
self._pressedPosition = hit["hitPosition"]
if self._moveTransform is not None and self._maxSize > 0:

position = self._moveTransform.localPosition + diff
position.x = self.clamp(position.x, -self._maxSize, self._

→˓maxSize)
position.y = self.clamp(position.y, -self._maxSize, self._

→˓maxSize)
self._moveTransform.localPosition = position
self._value = vmath.vec2(position.x / self._maxSize, position.y /

→˓ self._maxSize)
elif Touch.isReleased(i):
if self._pressed and self._fingerId == Touch.getId(i):

self._pressed = False
self._fingerId = -1
if self._moveTransform is not None:

self._moveTransform.localPosition = vmath.vec3(0, 0, self._
→˓moveTransform.localPosition.z)

self._value = vmath.vec2(0,0)

def getValue(self):
return self._value

def onDestroy(self):
self.moveCtrl = None
self._transform = None
self._scene = None

• Attach the JoyStick.py to jsMove object, assign jsMoveCtrl to moveCtrl textbox.

• Adjust PlayerMovement.py as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerMovement(Script):
def __init__(self, owner):

super().__init__(owner)
self.speed = 2.0
self.jsMove = None
self._movement = vmath.vec3(0, 0, 0)
self._transform = None
self._rigidbody = None
self._animator = None
self._playerHealth = None
self._jsMoveScript = None

def onStart(self):
self._transform = self.owner.getComponent("Transform")
self._rigidbody = self.owner.getComponent("Rigidbody")
self._animator = self.owner.getComponent("Animator")

(continues on next page)

112 Chapter 1. Contents

Indi Games Engine, Release 0.0.1

(continued from previous page)

self._playerHealth = self.owner.getComponent("PlayerHealth")
if self.jsMove is not None:

self._jsMoveScript = self.jsMove.getComponent("Script")

def onUpdate(self, dt):
if self._playerHealth.hp <= 0:

return
h, v = [0, 0]
if Keyboard.isPressed(KeyCode.KEY_W) or Keyboard.isPressed(KeyCode.KEY_UP):

v = -1.0
if Keyboard.isPressed(KeyCode.KEY_S) or Keyboard.isPressed(KeyCode.KEY_DOWN):

v = 1.0
if Keyboard.isPressed(KeyCode.KEY_A) or Keyboard.isPressed(KeyCode.KEY_LEFT):

h = -1.0
if Keyboard.isPressed(KeyCode.KEY_D) or Keyboard.isPressed(KeyCode.KEY_RIGHT):

h = 1.0

if h == 0 and v == 0 and self._jsMoveScript is not None:
mv = self._jsMoveScript.getValue()
h = mv.x
v = -mv.y

if h != 0 or v != 0:
self._movement = vmath.vec3(h, 0, v)
self._movement.normalize()
self._movement = self._movement * self.speed * dt
newRotation = vmath.quat_look_rotation(self._movement, vmath.vec3(0.0, 1.0,␣

→˓0.0))
self._rigidbody.moveRotation(newRotation)
self._rigidbody.movePosition(self._transform.position + self._movement)
self._animator.setValue("isWalking", True)

elif self._animator.getValue("isWalking"):
self._animator.setValue("isWalking", False)

def onDestroy(self):
self.jsMove = None
self._transform = None
self._rigidbody = None
self._animator = None
self._playerHealth = None
self._jsMoveScript = None

• Assign jsMove to jsMove textbox in Script Inspector.

Now, when play the game, the MC character will be able to controlled using the Move JoyStick, and he can shoot using
Shoot button in the screen.

Checkout ige-tutorials, branch 09-mobile-control github repo.

1.13. Third-Person Shooter 113

https://github.com/indigames/ige-tutorials/tree/09-mobile-control

Indi Games Engine, Release 0.0.1

1.14 Python API

igeScene Scene management
igeCore Core module
igeVmath Vector math
igeSdk Publishing SDK

114 Chapter 1. Contents

_static/html/igeScene.html
_static/html/igeCore/index.html
_static/html/igeVmath.html
_static/html/igeSdk.html

	Contents
	Installation
	From sources
	From a release build

	Editor Layout
	Menu Bar
	Toolbar
	Scene View
	Game Preview
	Hierarchy
	Inspector
	Console
	Asset Browser

	Your First Scene
	Create Project
	Project Structure
	Create Object
	Scripting

	Input
	Using Touch Screen
	Using Keyboard
	Using Virtual Keyboard

	Graphics
	Assets workflow
	Render Pipeline
	Camera
	Lighting
	Ambient Light
	Point Light
	Spot Light
	Directional Light

	Shadows
	Fogs
	Model
	Importing
	Using Model

	Animation
	Animation Clips
	Animator Controllers
	The Animator Window
	Animation State Machines
	Animation Parameters
	Animation transitions
	Transition Conditions

	Graphical User Interface
	Canvas
	RectTransform
	Pivot
	Anchors

	UI Components
	UIImage
	UIMask
	UIText
	UITextField
	UIButton
	UISlider
	UIScrollView

	Audio
	AudioSource
	AudioListener
	AudioManager

	Physic
	Rigidbody
	Collision
	BoxCollider
	SphereCollider
	CapsuleColider
	CompoundCollider
	MeshCollider

	Constraints
	FixedConstraint
	HingeConstraint
	SliderConstraint
	SpringConstraint
	Dof6SpringConstraint

	Softbody
	PhysicManager

	Navigation
	NavMesh
	DynamicNavMesh
	Navigable
	NavArea
	OffMeshLink
	NavAgent
	NavObstacle
	NavAgentManager

	Particle System
	Effekseer Editor
	Particle
	ParticleManager

	Platform Configuration
	Dependencies
	Windows Workstation
	MacOS Workstation

	Build Menu
	Project Setting Panel
	Generic Configuration
	Android Platform Settings
	iOS Platform Settings

	Third-Person Shooter
	1. About Scene
	Create Object
	Add Components
	Scripting

	2. Scene Setup
	Open The Scene
	Scene Navigation
	Scene Management

	3. Background Music
	4. Character Movement
	Add MC
	Character Animation
	Character Physic
	Character Movement Script

	5. Camera Setup
	6. Add Enemy
	7. GUI & HUD
	Add Score
	Add Health Bar

	8. MC Health
	Player Health
	Enemy Attack

	9. MC Shooting
	Add Gun to MC
	Add Fire Particle
	Add Smoke Particle
	Player Shooting
	Update Score

	10. Game Over
	Game Over UI
	Spawning Enemy
	Game Over Script
	Replay The Game

	11. Mobile Control
	Shoot Button
	Movement JoyStick

	Python API

