

Indigames’ Game Engine Documents

Indigames Game Engine is a flexible, efficient, free to use game engine, supports developing high quality games with ease and speed.

The documents include detailed instructions, and step-by-step tutorials to help you quickly learn how to develop cross-platform games with Indigames’ Engine.

Note

This project is under active development.

Contents

Getting Started

	Installation
	From sources

	From a release build

	Editor Layout
	Menu Bar

	Toolbar

	Scene View

	Game Preview

	Hierarchy

	Inspector

	Console

	Asset Browser

	Your First Scene
	Create Project

	Project Structure

	Create Object

	Scripting

User Manual

	Input
	Using Touch Screen

	Using Keyboard

	Using Virtual Keyboard

	Graphics
	Assets workflow

	Render Pipeline

	Camera

	Lighting
	Ambient Light

	Point Light

	Spot Light

	Directional Light

	Shadows

	Fogs

	Model
	Importing

	Using Model

	Animation
	Animation Clips

	Animator Controllers

	The Animator Window

	Animation State Machines

	Animation Parameters

	Animation transitions
	Transition Conditions

	Graphical User Interface
	Canvas

	RectTransform
	Pivot

	Anchors

	UI Components
	UIImage

	UIMask

	UIText

	UITextField

	UIButton

	UISlider

	UIScrollView

	Audio
	AudioSource

	AudioListener

	AudioManager

	Physic
	Rigidbody

	Collision
	BoxCollider

	SphereCollider

	CapsuleColider

	CompoundCollider

	MeshCollider

	Constraints
	FixedConstraint

	HingeConstraint

	SliderConstraint

	SpringConstraint

	Dof6SpringConstraint

	Softbody

	PhysicManager

	Navigation
	NavMesh

	DynamicNavMesh

	Navigable

	NavArea

	OffMeshLink

	NavAgent

	NavObstacle

	NavAgentManager

	Particle System
	Effekseer Editor

	Particle

	ParticleManager

	Platform Configuration
	Dependencies
	Windows Workstation

	MacOS Workstation

	Build Menu

	Project Setting Panel
	Generic Configuration

	Android Platform Settings

	iOS Platform Settings

Tutorials

	Third-Person Shooter
	1. About Scene
	Create Object

	Add Components

	Scripting

	2. Scene Setup
	Open The Scene

	Scene Navigation

	Scene Management

	3. Background Music

	4. Character Movement
	Add MC

	Character Animation

	Character Physic

	Character Movement Script

	5. Camera Setup

	6. Add Enemy

	7. GUI & HUD
	Add Score

	Add Health Bar

	8. MC Health
	Player Health

	Enemy Attack

	9. MC Shooting
	Add Gun to MC

	Add Fire Particle

	Add Smoke Particle

	Player Shooting

	Update Score

	10. Game Over
	Game Over UI

	Spawning Enemy

	Game Over Script

	Replay The Game

	11. Mobile Control
	Shoot Button

	Movement JoyStick

API Documents

	Python API

Footnotes

Installation

From sources

Compiling igeCreator from sources requires using Visual Studio 2019 and CMake. You will need to clone the repository and run the scripts\genProject.bat, the visual studio project will be generated in project\igeCreator.sln.

From a release build

You can download the release build by checking a releases list#1.

Footnotes

	#1

	https://github.com/igeCreator

Editor Layout

When launching igeCreator for the first time, you will see the Editor window similar to this:

[image: Editor Layout]

Menu Bar

Menu Bar provides some functions to control the editor windows, as well as tools and other settings related to the scene.

[image: Menu]

Toolbar

Toolbar provides controls onto your scene. It allows you to play, pause, resume, stop the game preview. It also alows changing Gizmo and Camera modes.

[image: Toolbar]

Scene View

[image: Scene View]

The Scene View is the main view of igeCreator editor. It will give you a real-time feedback of what is happening in your current scene while manipulate the objects and settings using the editor.

To asjust the editor camera, use controls below:

	Action

	Input

	Rotate

	[Mouse] Drag Right Button

	Zoom

	[Mouse] Scroll Middle Button

	Move

	[Mouse] Drag Middle Button

	Focus

	[Keyboard] Press F Key

To add game object to the scene, just drag and drop the asset files in the scene view, based on the file type the engine will create game object and attach relevant component(s) automatically.

The game object can also be added to the scene by seleting and right-clicking the parent object to show the Create Menu with various types of object to create.

[image: Create Menu]

Also, the object can be manipulated with actions below:

	Action

	Input

	Select

	[Mouse] Click Left Button

	Multi Select

	[Mouse] Drag Left Button

	Copy

	[Keyboard] Press Ctrl + C Key

	Paste

	[Keyboard] Press Ctrl + V Key

	Duplicate

	[Keyboard] Press Ctrl + D Key

	Delete

	[Keyboard] Press Del Key

Game Preview

The Preview, like the Scene View, reflects what is happening in your scene, from your game active camera. The editor will automatically focus the Preview when playing the scene.

[image: Preview]

Note

The GUI layer is hidden in editing mode, so that developer can focus on adjusting the 3D scene. In playing mode, the game will be played just like it will be on devices.

Hierarchy

The Hierarchy window shows the current scene hierarchy with relations between objects. Besides, you can also create/select/delete/move/copy/paste/drag objects in this view.

[image: Hierarchy]

User can select object by clicking the item in the tree. Multiple selection can be done with with help of using Ctrl and Shift keys.

User can also drag and drop object to create parent-children relationship in the hierarchy tree. Assets drag and drop in hierarchy is also implemented.

To create prefab, just simply drag the item in hierarchy to prefabs folder in the Assets Browser.

Tip

To focus the camera on an object in complex scene, select it node in hierarchy and press F key.

Inspector

In the Inspector you’ll be able to view and edit the currently selected object. Adding, tweaking and removing components, changing object settings (name, tag, transform…).

[image: Inspector]

All the object has Transform component by default. The GUI element will have RectTransform which is a derivative of Transform component specilized for 2D and GUI.

Besides, there are various types of component which can be added into a game object, such as:

	Component

	Usage

	Camera

	Camera in game

	Figure

	Model (IGE Engine format)

	Sprite

	Sprite in game

	Animator

	Animation controller

	Particle

	Particle effect

	Script

	Scripting, to control object’s behavior

	Text

	Text in game, using TTF or Bitmap

	AmbientLight

	Ambient Light

	DirectionalLight

	Directional Light

	PointLight

	Point Light

	SpotLight

	Spot Light

	AudioSource

	Audio source

	AudioListener

	Audio Listener

	Canvas

	Canvas for rendering GUI

	UIImage

	GUI Image

	UIText

	GUI Text

	UITextField

	GUI Text Field

	UIButton

	GUI Button

	UISlider

	GUI Slider

	UIScrollView

	GUI Scroll View

	UIScrollBar

	GUI Scroll Bar

	UIMask

	GUI Mask

	PhysicBox

	Physic Box collider

	PhysicSphere

	Physic Sphere collider

	PhysicCapsule

	Physic Capsule collider

	PhysicMesh

	Physic Mesh collider

	PhysicSoftBody

	Physic Soft-Body and cloth simulation

	Navigable

	Mark object/mesh as navigable

	NavMesh

	Navigation mesh

	DynamicNavMesh

	Dynamic navigation mesh

	NavAgent

	Navigation agent

	NavObstacle

	Navigation obstacle

	NavArea

	Mark the navigation area

	OffMeshLink

	Link between navigation areas

Note

Usage of each component will be discussed in Tutorials sections.

Console

Show log from the engine as well as the game so that it’s easier for developer to debug.

[image: Console]

Note

The console reflects the log from Python API, so to print the log user just need to use print() function from Python API.

Asset Browser

Provides access to all assets of the project. User can create/move/delete files as well as using right-clicking context menu to perform various actions.

The Asset Browser allows you to drag and drop assets to places like Scene View to create object, or Inspector to configure object…

[image: Assets Browser]

Footnotes

Your First Scene

Create Project

Go to the menu bar: File -> New Project to create new project. This action also create new empty scene for the newly created project.

[image: Create Project]

This scene is composed of two object: a directional light, and a camera.

Having a camera in a scene is essential for the game to show something onto the screen.

You can go to the menu bar: File -> Save Scene to save the scene. Then you can click the Play button in the Toolbar to preview the scene.

A project can contain multiple scenes. To create a new scene, go to File -> New Scene. To load a scene, go to File -> Load Scene or just drag a file with .scene extension in the Scene View.

[image: Create Cube]

To change a scene at runtime, we need to use Python API which will be introduced later.

Project Structure

	Item

	Meaning

	config

	[Folder] Contains project’s configuration.

	figures

	[Folder] Contains models and animations.

	fonts

	[Folder] Contains fonts used in the project.

	scenes

	[Folder] Contains scene files.

	scripts

	[Folder] Contains game logic source codes.

	sounds

	[Folder] Contains audio files.

	sprites

	[Folder] Contains UI and 2D images.

	*.igeproj

	[File] The project file

Create Object

In order to add an object to the scene, select and right-click an item in Hierarchy, select Create -> Primitive -> Cube.

[image: Create Cube]

You should now see a cube in your scene.

[image: Scene With New Cube]

Scripting

To control behavior of an object, we use Script Component.

In the Inspector, add new Script Component.

[image: Create Script Component]

In the Asset Browser, go to scripts, right-click then select New Script, then name it move.py.

[image: Create Script Component]

Open the newly created file, edit it with content below:

import math
import igeVmath as vmath
from igeScene import Script

class Move(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.elapsed = 0.0

 def onUpdate(self, dt):
 self.elapsed = self.elapsed + dt
 self.owner.transform.position = vmath.vec3(0, math.sin(self.elapsed), 0)

Then drag the file in Script component Inspector.

[image: Create Script Component]

Save the scene, by pressing Ctrl + S or File -> Save Scene. Then you can press the Play button to test it, the cube should keep moving up and down follow sin pattern continuosly.

Footnotes

Input

Input allows the user to interact with the game using input devices.

IGE supports many types of inputs, including:

	Touch Screen

	Mouse

	Keyboard

	(WIP) Motion Sensors: Accelerometor, Gyroscope

	(WIP) Joystick

	(WIP) Controller

Using Touch Screen

The Input module is a Python module which provides functions to work with input devices.

To simplify the implementation, the Touch Screen and Mouse inputs are implemented in igeCore.input.touch module. We support multiple touch by default.

Mouse events are map to touch, with special finger Id for left, right and middle buttons.

Below is an example of how to use Touch to control UI behavior:

from igeScene import Script
from igeCore.input.touch import Touch

class TouchTest(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onUpdate(self, dt):
 for i in range(0, Touch.count()):
 x,y = Touch.getPosition(i)
 if Touch.isPressed(i):
 print(f"Pressed {Touch.getId(i)} at ({x}, {y})")

Using Keyboard

To get access to Keyboard, use the igeCore.input.keyboard API.

Below is an example of how to use keyboard:

from igeScene import Script
from igeCore.input.keyboard import KeyCode, Keyboard

class KeyboardTest(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onUpdate(self, dt):
 if Keyboard.isPressed(KeyCode.KEY_SPACE):
 print("SPACE pressed - FIRE")

Using Virtual Keyboard

Use the API below to show/hide virtual keyboard.

from igeScene import Script
import igeCore
from igeCore.input.keyboard import KeyCode, Keyboard

class VirtualKeyboardTest(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onUpdate(self, dt):
 if not igeCore.isVirtualKeyboardShown(): # check if VK is show
 igeCore.showVirtualKeyboard("Input default text here...") # request show VK

 if Keyboard.isPressed(KeyCode.KEY_RETURN):
 text = igeCore.getInputText() # get the text
 igeCore.hideVirtualKeyboard() # hide the keyboard

Footnotes

Graphics

IGE graphics features help to create beautiful, optimized graphics across a range of platforms, from mobile to desktop through an easy to use workflow.

Assets workflow

Graphics assets including model, animation, texture and shader can be loaded, converted and displayed using IGE.

	Animation and model files such as Collada DAE and FBX are imported to IGE then converted to IGE optimized format in which:
	
	*.pyxf: Use for model

	*.pyxa: Use for animation

	Texture files are imported and converted to:
	
	*.pyxi: Use for texture

Render Pipeline

The builtin render pipeline is implemented using forward rendering technique, which utilize OpenGL 3.x / OpenGLES 3.x API.

Forward rendering renders each object in one or more passes:

	OpaquePass

	TransparentPass

	ShadowPass

Camera

A game represents game objects in a 3D space. The device’s screen is 2D space, thus using camera help to capture the scene to display it in the device screen.

Camera can be created by adding a Camera component to a game object, or using Create Menu -> Camera.

Using perspective camera, objects which are far away are smaller than those nearby which is similar to the real life.
Orthographic camera is useful to display the scene where all objects appear at the same scale, like GUI or isometric view.

Camera inspector reference:

[image: Camera inspector]

	Property

	Function

	FOV

	Field of view

	Near

	Near clipping

	Far

	Far clipping

	Aspect

	Aspect ratio

	Up

	Up vector: 0 = X, 1 = Y, 2 = Z

	Ortho

	Orthographic or perspective camera

	OrtW

	Ortho width

	OrtH

	Ortho height

	LockTarget

	Lock target, create follow camera

	Target

	Position of target to follow

	wBase

	Whether width based or heigh based scaled

	ScrScale

	Screen scale factor

	ScrOffset

	Screen offset factor

	ScrRot

	Screen rotation factor

	ClearColor

	Color set to when clear screen

Camera can be controlled by using Python API, with module igeScene.Camera. Check the Camera API Document for more info.

Multiple camera also supported, but only one active camera can be used at a time (in combination with builtin GUI Camera).
To set current camera as active, use Python API as example below:

from igeScene import Script

class GameManager(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onUpdate(self, dt):
 # find a camera and set it active
 camera = self.owner.scene.findObjectByName("MyCamera")
 if camera is not None:
 self.owner.scene.activeCamera = camera

Lighting

Ambient Light

Ambient light is diffuse environmental light that is present all around the Scene and doesn’t come from any specific source object. It can be an important contributor to the overall look and brightness of a scene.

Ambient light can be useful in a number of cases, depending upon your chosen art style.
An example would be bright, cartoon-style rendering where dark shadows may be undesirable or where lighting is perhaps hand-painted into textures.
It can also be useful if you need to increase the overall brightness of a scene without adjusting individual lights.

[image: Ambient Light]

	Property

	Function

	SkyColor

	Ambient sky color

	GroundColor

	Ambient ground color

	Direction

	Ambient direction vector

Tip

AmbientLight component is usually attached to the root node of the object hierarchy tree, because one scene needs only one Ambient light settings.

Point Light

A Point Light is located at a point in space and sends light out in all directions equally. The direction of light hitting a surface is the line from the point of contact back to the center of the light object.

[image: Point Light]

	Property

	Function

	Color

	Light color

	Intensity

	Light intensity value

	Range

	Range of effectiveness

Spot Light

Like a Point Light, a Spot Light has a specified location and range over which the light falls off. However, a Spot Light is constrained to an angle, resulting in a cone-shaped region of illumination.

[image: Spot Light]

	Property

	Function

	Color

	Light color

	Intensity

	Light intensity value

	Range

	Range of effectiveness

	Angle

	Constrained angle

Directional Light

Directional Lights are useful for creating effects such as sunlight in your scenes. Behaving in many ways like the sun, directional lights can be thought of as distant light sources which exist infinitely far away. A Directional Light doesn’t have any identifiable source position and so the light object can be placed anywhere in the scene. All objects in the scene are illuminated as if the light is always from the same direction.

By default, every new scene contains a Directional Light represents the sunlight/moonlight.

[image: Directional Light]

	Property

	Function

	Color

	Light color

	Intensity

	Light intensity value

Note

The direction of light is controlled by the rotation property of the object it attached to.

Shadows

IGE uses a technique called shadow mapping to render real-time shadows.

Shadow mapping uses textures called shadow maps. Shadow map texture resolution is set to 2048x2048 by default, and can be as largest as 4096x4096.
Using larger texture result in higher quality, but it costs more VRAM and may decrease game performance.

To display shadow, ensure to have:

	Shadow caster objects has enabled casting ability.

	Shadow receiver has been enabled receiving ability.

	Directional Light is ebabled and the light direction can cast shadow from shadow casters to shadow receiver.

	Shadow parameters setup correctly.

When importing models, the ability to cast/receive shadow is disabled by default, to preserve best performance.
To enable these abilities, go to Assets Browser, select the file to modify, in Assets windows, enable it’s flags accordingly then save it.

[image: Shadow flags]

The shadow parameters can be adjusted with Environment component, attached to the root node of the hierarchy.

[image: Shadow parameters]

	Property

	Function

	Color

	Shadow color

	Size

	Shadow map texture size

	Density

	Shadow density

	Wideness

	Shadow wideness

	Bias

	Shadow Bias value

Note

With current implementation, only the first DirectionalLight can cast shadow because shadow transformation depends on the light direction.

Tip

Wideness and size are related, so wideness shoule be smaller as possible so it can improve shadow quality, or can use smaller size to improve performance.

Fogs

IGE provide basic fog setting to simulate fog.

[image: Fogs parameters]

	Property

	Function

	Color

	Fog color

	Near

	Fog near distance

	Far

	Fog far distance

Model

Models are files that contain data about the shape and appearance of 3D objects, such as characters, terrain, or environment objects.
Model files can contain a variety of data, including meshes, materials, and textures. They can also contain animation data, for animated objects.
Usually, models are created using an 3D modeling software, such as Blender®, Autodesk® Maya®, Autodesk® 3ds Max® …, and then import them into IGE.

IGE supports importing .dae and .fbx file formats. After importing to IGE, the files are converted to .pyxf format which is specially optimized for IGE.
The game engine will automatically detect changes in the file system, and import model files accordingly.

Importing

In order to change importing options, go to Assets Browser, select the file to change settings, then look for Assets windows, then change the options when needed.

[image: Model settings]

	Property

	Function

	EXPORT_NAMES

	Include meshes name in exported version

	BASE_SCALE

	Base scale factor (dae: 1.0, fbx: 100.0)

	TRIANGLE_STRIP

	[Optimize] Strip redundant trianges

	OPTIMIZE_MESH

	[Optimize] Optimize mesh

	OPTIMIZE_VERTEX

	[Optimize] Optimize vertex

	OPTIMIZE_ANIMATION

	[Optimize] Optimize animation

	SHADER_MAKE_SHADOW

	Enable shadow casting

	SHADER_RECEIVE_SHADOW

	Enable shadow receiving

	SHADER_VERTEX_COLOR

	Enable vertex color

	SHADER_NUM_DIR_LAMP

	Number of directional light

	SHADER_NUM_POINT_LAMP

	Number of point light

	SHADER_NUM_SPOT_LAMP

	Number of spot light

	EMBEDDED_ANIMATION

	Embbed animation, or build saparate anim file

Using Model

Model can be dragged to the Scene View to create scene object. Also, it can be attached to Figure or EditableFigure components of an empty object.

Figure component is used to render ‘fixed’ model, wothout ability of modifying mesh structures. It is the fasted way to render model using IGE.
EditableFigure is used in case model’s mesh need to be changed at run time.

[image: Figure component]

	Property

	Function

	Path

	Path to the model file

	Fog

	Enable/disable fog

	DoubleSide

	Enable/disable double side rendering

	FFCulling

	Enable/disable front-face culling

	Z-Test

	Enable/disable depth testing

	Z-Write

	Enable/disable depth writing

	ScissorTest

	Enable/disable scissor test

	Update Ratio

	Updating ratio, used to control animation speed

	Mesh

	List of meshes included in the model file

	Material

	List of materials included in the model file

For more details of scripting API, please refer to Python API Document.

Footnotes

Animation

IGE animation system provides:

	Easy workflow and setup of animations.

	Preview of animation clips, transitions and interactions between them.

	Management of complex interactions between animations with a visual programming tool.

	Layering and masking features.

[image: IGE Animation System]

Animation Clips

Animation Clips are one of the core elements to IGE animation system, which are imported from external sources such as animation from Blender®, Autodesk® Maya®, Autodesk® 3ds Max® … softwares.
In Assets Browser, animation clip files have .pyxa extension.

[image: Animation Clips]

Animator Controllers

An Animator Controller allows you to arrange and maintain a set of animations for a character or other animated scene objects.
The controller has references to the animation clips used within it, and manages the various animation states and the transitions between them using a Animation State Machine.

To create an Animator Controller, right-click on the Assets Browser, select New Animator, like below:

[image: Create Animator Controller]

Double-clicking the new created file will open Animator Window which can be used to create, view and modify the animator controller.

The animator controller is then finally applied to an object by attaching an Animator component that references them. See the Python API Document for further details about their usage.

The Animator Window

The Animator Window allows you to create, view and modify Animator Controller assets.

[image: Animator Window]

The window contains:

	Layout Area: use to create, arrange and connect states in your Animator Controller.

	Layers Area: use to view and edit layers within Animator Controller. IGE allows to have multiple layers within a single animator controller, to control different parts of the object using separate state machine.

	Parameters Area: allow to create, view and edit the parameters using in Animator Controller. Those parameters are variables which act as input for the state machine, to control the transitioning condition between states.

	Inspector: to edit state, or transition settings.

Animation State Machines

Animation State Machines represent an overview of all of the animation clips related to a particular animation object, and allow various events in the game to trigger different animations.

[image: Animator Window]

State Machines consist of States, Transitions and Events which together provide control overall animations behavior of a single object using Animator Controller.

Animation Parameters

Animation Parameters are variables that are defined within an Animator Controller that can be accessed and assigned values from scripts. This allow developer to control the behavior of animation system using IGE.

Parameter values can be set up using the Parameters Area of the Animator Window.

[image: Animator Parameters]

The parameters can be of four basic types:

	Integer: a integer number

	Float: a float number

	Bool: a true / false value

	Trigger: a true/false value that is reset by the controller when consumed by a transition

Parameters can be assigned values from a script using functions in the Animator class, using Python API below:

from igeScene import Script, Animator
from igeCore.input.touch import Touch
from igeCore.input.keyboard import KeyCode, Keyboard

class SimpleCharacter(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onStart(self):
 self.animator = self.owner.getComponent("Animator")
 self.animator.resetTrigger("fire")

 def onUpdate(self, dt):
 x,y = Touch.getPosition(0)
 fire = Keyboard.isPressed(KeyCode.KEY_SPACE)
 self.animator.setFloat("move_x", x)
 self.animator.setFloat("moveZ_y", y)
 self.animator.setTrigger("fire", fire)

More details about Animator API, please check Python API Document.

Animation transitions

	Animation transitions allow the state machine
	to switch or blend from one animation state to another. Transitions define not only how long the blend between states should take, but also under what conditions they should activate.

Each view in the animator window has:

	Entry: The entry node will be evaluated first to select which state the state machine begins with, by evaluating the state of your parameters when the state machine begins.

	Exit: used to indicate that a state machine should exit.

	Any: specify a situation where you want to go to a specific state regardless of which state you are currently in.

	Other states: animation states in the Animator Controller.

You can set up a transition to occur only when certain conditions are true. To set up these conditions, specify values of parameters in the Animator Controller, then setting up the transition condition in Inspector view.

[image: Animation Transition Condition]

	Property

	Function

	Mute

	Whether this transition is considered

	Offset

	The offset to begin in the destination state

	HasExitTime

	Make transition at the specific time specified in ExitTime

	ExitTime

	Represents the exact time at which the transition can take effect

	FixedDuration

	If checked, the transition time is interpreted in seconds.

	Duration

	Transition duration (normalized time or seconds, depends on FixedDuration flag).

	Conditions

	Transition conditions

Transition Conditions

A transition can have a single condition, multiple conditions, or no conditions at all. A condition consists of:

	An event parameter, the value of which is considered in the condition.

	A conditional predicate, if needed (for example, less or greater for floats).

	A parameter value, if needed.

If HasExitTime is enabled for the transition and has one or more conditions, these conditions are only checked after the exit time of the state. This allows you to ensure that your transition only occurs during a certain portion of the animation.

Footnotes

Graphical User Interface

IGE includes is a set of tools for developing user interfaces for games and applications.

Canvas

The Canvas is a game object with a Canvas component on it. All UI elements must be children of a Canvas.
Creating a new UI element, such as an UIImage using the menu Create > GUI > UIImage, automatically creates a Canvas, if there isn’t already a Canvas in the scene.

[image: Canvas]

Tip

To work with GUI, switch the Scene Camera to 2D mode. The Canvas will be displayed as a rectangle in the view, it help to easier posioning the UI elements on the scene.

The Canvas component can be setting up using Inspector.

[image: Canvas Inspector]

	Property

	Function

	DesignSize

	Canvas design screen size

	TargetSize

	Target screen size (Editor only)

	ScreenMatchMode

	
	MatchWidthOrHeight: match with width/height following a ratio

	Extend: match the maximal screen scale ratios

	Shrink: math the minimal screen scale ratios

RectTransform

The RectTransform is a new transform component that is used for all UI elements.
It has position, rotation, and scale just like regular Transforms, but it also has a width and height, used to specify the dimensions of the rectangle.

[image: RectTransform Inspector]

	Property

	Function

	X, Y, Z

	Position X, Y, Z

	W, H

	Width and Height

	AnchorMin

	Lower left anchor handle

	AnchorMax

	Upper right anchor handle

	Pivot

	Pivot position

	Rotation

	Rotation value

	Scale

	Scale value

Tip

Use Z position to adjust the drawing order of elements, and may also help to resolve Z-fighting issues.

Pivot

Rotations, size, and scale modifications occur around the pivot so the position of the pivot affects the outcome of a rotation, resizing, or scaling.

Anchors

A child RectTransform can be anchored to the parent RectTransform in various ways:

[image: Anchor Preset]

Tip

The blue arrow indicates that the child will stretch together with parent size, in horizontal, vertical or both accordingly.

UI Components

With the introduction of the UI system, new Components have been added that will help you create GUI specific functionality.

UIImage

The UIImage component is used to display an image on screen.

[image: UIImage]

The Inspector window allows to change the image settings:

[image: UIImage Inspector]

	Property

	Function

	Path

	The path to the image file

	Inteactable

	Ability to receive events using Script

	Sprite Type

	The Sprite type, can be:

	Simple: simple sprite

	Sliced: 9-slices sprite

	Fill Method

	Allow to fill just part of an image by:

	Horizontal

	Vertical

	Radial 90

	Radial 180

	Radial 360

	Fill Origin

	Fill origin, can be:

	Left

	Right

	Bottom Left

	Bottom Right

	Top Left

	Top Right

	Fill Amount

	Amount of filling, from 0.0 to 1.0.

	Clockwise

	Fill direction, clockwise or counter-clockwise

	Color

	Diffuse color

UIMask

An UIMask is not a visible UI control but rather a way to modify the appearance of a control’s child elements.
The mask restricts the child elements to the shape of the parent.
So, if the child is larger than the parent then only the part of the child that fits within the parent will be visible.

[image: UIMask Component]

	Property

	Function

	Enable

	Enable/disable mask

	Fill Method

	Allow to fill just part of an image by:

	Horizontal

	Vertical

	Radial 90

	Radial 180

	Radial 360

	Fill Origin

	Fill origin, can be:

	Left

	Right

	Bottom Left

	Bottom Right

	Top Left

	Top Right

	Fill Amount

	Amount of filling, from 0.0 to 1.0.

	Clockwise

	Fill direction, clockwise or counter-clockwise

UIText

The UIText component has a Text area for entering the text that will be displayed.

[image: UIText Component]

It is possible to set the font, font style and font size, and alignment of the text using Inspector.

[image: UIText Component]

	Property

	Function

	RectAutoScale

	Auto resize the Rect Transform with text size

	Text

	The text to display

	Font

	The font to display (.ttf, .otf, .pybm)

	Size

	The font size

	Color

	Text color

	AlignHorizontal

	Horizontal alignment

	AlignVertical

	Vertical alignment

The UIText support drawing text using true-type font (.ttf, .otf) and bitmap font (.pybm) formats.

Bitmap Font Creator can be used to create bitmap font, which can be found at Menu -> Tool -> Bitmap Font Creator.

[image: Bitmap Font Creator]

	Property

	Function

	Load FontBitmap

	Load the saved bitmap font

	Save FontBitmap

	Save the bitmap font

	Image

	Path to the image file (.pyxi)

	Characters Set

	Characters set to be generated

	Generate Glyphs

	Generate/reset glyphs for input characters set

	Texture Size

	The image size

	Font Size

	The font size

	Font Base Size

	The font base size

	Index

	Glyph index

	Unicode

	Character in Unicode format

	Position

	Top-left position of the character in the image

	Size

	Size of the character

	Offset

	Character offset

	Advance

	Character advance width

To create new bitmap font, flows steps below:

	Accquire bitmap texture file which contains all the characters, copy it to fonts folder.

	Open Bitmap Font Creator, select the image file.

	Input all the characters that is supported in Characters Set textbox.

	Generate glyphs by pressing Generate Glyphs button.

	For each glyphs, input the position, size, offset and advance value.

	Save the font by pressing Save FontBitmap button.

	Test the font by create UIText component, then drag and drop the newly created font in the Inspector window.

[image: UIText Using Bitmap Font]

Note

Bitmap font only displayed as RGB texture if background use alpha channel. Otherwise, it will render as grayscale color to resolve alpha issue.

Tip

Saved Bitmap fonts can be modified with new characters set. Just need to add more character in the Characters Set textbox, then press Generate Glyphs, it will create new glyphs without affects existing glyphs.

Tip

Better to use an image editor (such as Paint.NET(R), MS Paint(R), Adobe(R) Photoshop(R)) to mesure the character attributes to put in the glyphs parameters.

UITextField

UITextField is used to display an editable text box to the user.

[image: UITextField]

The usage of this component is similar to UIText, except it allows text to be input by user.

[image: UITextField Component]

	Property

	Function

	RectAutoScale

	Auto resize the Rect Transform with text size

	Text

	The text to display

	Font

	The font to display (.ttf, .otf, .pybm)

	Size

	The font size

	Color

	Text color

	Background

	Text background color

	AlignHorizontal

	Horizontal alignment

	AlignVertical

	Vertical alignment

To handle the input ended event, add this code to Script:

from igeScene import Script

class TxtUserName(Script):
 def __init__(self, owner):
 super().__init__(owner)
 # Read the value from UITextField
 self.username = owner.getComponent("UITextField").text
 print(f"Welcome {self.username}!")

 # Invoked at input ended
 def onValueChanged(self, val):
 self.username = val
 print(f"Welcome back {self.username}!")

UIButton

The UIButton component implement a button in GUI, which responds to a click from the user and is used to initiate or confirm an action.

[image: UIButton]

The Inspector properties are as below:

[image: UIButton Component]

	Property

	Function

	Inteactable

	Ability to receive events using Script

	Transition Mode

	The transition between button states:

	Color Tint

	Sprite Swap

	Image

	Background image

	Normal

	Color/sprite of the Normal state

	Pressed

	Color/sprite of the Pressed state

	Selected

	Color/sprite of the Selected state

	Disabled

	Color/sprite of the Disabled state

	Fade Duration

	Transition Duration

	Color

	Diffuse color

	Sprite Type

	The Sprite type, can be:

	Simple: simple Sprite

	Sliced: 9-slices sprite

	Border Left

	Border left percentage

	Border Right

	Border right percentage

	Border Top

	Border top percentage

	Border Bottom

	Border bottom percentage

The action can be controlled using Script, which onClick callback like below:

from igeScene import Script

class BtnNoAds(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onClick(self):
 print("NoAds Button Clicked, process purchasing...")

UISlider

The UISlider allows user to select a numeric value from a range by dragging the mouse.

[image: UISlider]

The Inspector properties are as below:

[image: UISlider Component]

	Property

	Function

	Inteactable

	Ability to receive events using Script

	Normal

	Color of the Normal state

	Pressed

	Color of the Pressed state

	Disabled

	Color of the Disabled state

	Fade Duration

	Transition Duration

	Direction

	Slider direction

	Left To Right

	Right To Left

	Bottom To Top

	Top To Bottom

	Min

	Min value

	Max

	Max value

	Value

	Current value

	Whole Numbers

	Constrained value to integer number when checked

To handle value changed event, add this code to Script:

from igeScene import Script

class VolumeSlider(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onValueChanged(self, val):
 self.volume = val

UIScrollView

An UIScrollView can be used to scroll the content that takes up a lot of space and needs to be displayed in a small area.
It is usually combined with an UIMask in order to create a scroll view, and with one or two UIScrollBar that can be dragged to scroll horizontally or vertically.

[image: UIScrollView]

The Inspector properties are as below:

[image: UIScrollView Component]

	Property

	Function

	Inteactable

	Ability to receive events using Script

	Background

	Background image

	Sprite Type

	Sprite type, either Simple or Sliced

	Color

	Diffuse color

	Horizontal

	Enable/disable horizontal scrollbar reference

	Vertical

	Enable/disable vertical scrollbar reference

	Move Type

	Movement type, either Claimed or Elastic

	Elasticity

	The amount of bounce used in the elasticity mode

	Elastic Extra

	The extra boundary allowed in Elastic mode.

	Inertia

	Allow content to move after pointer releasing

	Deceleration Rate

	Determines how quickly the contents stop moving

To support UIScrollView implement, the UIScrollBar is introduced to allow the user to scroll the view using drag handler.

[image: UIScrollBar Component]

	Property

	Function

	Inteactable

	Ability to receive events using Script

	Background

	Background image

	Sprite Type

	Sprite type, either Simple or Sliced

	Color

	Diffuse color

	Normal Color

	Color of the handler in normal state

	Pressed Color

	Color of the handler in dragging state

	Disabled Color

	Color of the handler in disabled state

	Fade Duration

	Fading duration, in second

	Direction

	Dragging direction

	Left To Right

	Right To Left

	Bottom To Top

	Top To Bottom

	Value

	Current value

	Size

	Handler size

To handle value changed event, add this code to Script:

from igeScene import Script

class HScrollBar(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onValueChanged(self, val):
 self.position = val

Footnotes

Audio

Indigames engine supports playing sounds in 3D space. Sounds are emitted by objects (sources) and heard by receivers (listeners).

AudioSource

The AudioSource is used to play an audio track, at the position of the object it is attached to, in 3D space.

Indigames engine supports playing .ogg, .wav, .mp3, .mp4 formats.

[image: AudioSource Component]

	Property

	Function

	AutoPlay

	Whether auto play when loaded

	Stream

	Should stream audio or preload to memory

	Single

	Only one instance of this should play at the same time

	Loop

	Enable this to make the Audio track loop

	Track

	Audio track

	Volume

	Volume at a distance of one meter from the AudioListener

	Pan

	Panning value: -1 is Left, 0 is Center, 1 is Right

	Min Distance

	Audio source min distance: distance < min means max volume

	Max Distance

	Audio source max distance: distance > max means zero volume

	Velocity

	Audio source velocity

	Attenuation Model

	Attenuation model:

	NO ATTENUATION

	INVERSE DISTANCE

	LINEAR DISTANCE

	EXPONENTIAL DISTANCE

	Attenuation Factor

	Attenuation rolloff factor

	Doppler Factor

	Factor to reduce or enhance doppler effect

Refer to AudioSource API for usage within Python Script.

AudioListener

The AudioListener receives input from AudioSource in the scene and plays sounds through the computer speakers. It’s usually attached to the main camera.

The audio system will play through only one listener at the same time, which is fisrt enabled AudioListener available.

[image: AudioListener Component]

	Property

	Function

	Enable

	Enable/disable the audio listener

Refer to AudioListener API for usage of AudioListener component within Python Script.

AudioManager

The AudioManager is automatically created and attached to the root object, to have the global setting of the Audio system.

[image: AudioManager Component]

	Property

	Function

	Global Volume

	Global volume of audio system

The AudioManager properties also can be controlled using Python Script. Refer to AudioManager Document for more details.

Footnotes

Physic

IGE built-in 3D physics engine is an integration of the Bullet Physic, which is a 3D physic engine.

Rigidbody

In physics simulation, rigid bodies enable physics-based behaviour such as movement, gravity, and collision. A Rigidbody is the main component that enables physical behaviour for a game object.
With a Rigidbody attached, the object will immediately respond to gravity. If one or more Collider components are also added, the game object is moved by incoming collisions.

[image: Rigidbody Component]

	Property

	Function

	CCD

	Enable/disable Continous Collision Detection mode

	Kinematic

	Set Rigidbody to Kinematic or Dynamic mode

	Trigger

	Enable trigger collision events

	ActiveState

	Set activation state

	CollisionGroup

	Collision group value

	CollisionMask

	Collision mask value

	Mass

	The mass of the object (in kilograms by default).

	Friction

	Friction value

	Restitution

	Restitution value (aka bounciness value)

	LinearVelocity

	Linear velocity

	LinearFactor

	Linear factor

	LinearSleepThreshold

	Linear sleeping threshold

	AngularVelocity

	Angular velocity

	AngularFactor

	Angular factor

	AngularSleepThreshold

	Angular sleeping threshold

	PositionOffset

	Position offset (adjust the center of the physic object)

	Constraints

	List of constraints applied in Rigidbody

Note

If the game object contains Rigidbody component, it’s Transform will be controlled by the Rigidbody. Thus, to change the transform just apply force or torque to the Rigidbody by using Python Script.

Note

When Trigger is enabled, use Python Script to receive triggered events. Refer to Rigidbody API for more details.

Collision

To configure collision between game objects, you need to use Colliders.
Colliders define the shape of the game object for the purposes of physical collisions.

BoxCollider

The BoxCollider is a basic cuboid-shaped collision primitive, which are useful for items such as crates, chests, or floors using thin boxes.
It can also be used to create complex collision shape using CompoundCollider component.

[image: BoxCollider]

[image: BoxCollider Component]

	Property

	Function

	Size

	Size of the collider in X, Y, Z direction

	Margin

	Collision margin

Note

Collision margin is used to optimize physic calculation, should keep it larger than 0.

SphereCollider

The SphereCollider is a basic sphere-shaped collision primitive.

[image: SphereCollider]

[image: SphereCollider Component]

	Property

	Function

	Radius

	The radius of the sphere shape

	Margin

	Collision margin

CapsuleColider

The CapsuleCollider is made of two half-spheres joined together by a cylinder, to create a capsule primitive shape.

[image: CapsuleColider]

[image: CapsuleColider Component]

	Property

	Function

	Height

	The total height of the collider

	Radius

	The radius of the collider width

	Margin

	Collision margin

CompoundCollider

Compound colliders approximate the shape of an object while keeping a low processor overhead, by combining primitive colliders of the child objects.
When you create a compound collider like this, you should only use one Rigidbody component, placed on the owner object in the hierarchy.

[image: CompoundCollider]

Note

CompoundCollider do not work with child objects which contains other CompoundCollider or MeshCollider.

Note

Should have only one Rigidbody attached to the whole hierarchy which the root object contains both CompoundCollider and Rigidbody.
Otherwise, the simulation may not work as designed.

MeshCollider

The MeshCollider create Collider from meshes in FigureComponent. It is more accurate for collision detection than using primitives colliders.

[image: MeshCollider]

[image: MeshCollider Component]

	Property

	Function

	ConvexHull

	Create and convex hull from mesh

	TriangleMesh

	Use the triangle mesh

	Margin

	Collision margin

Note

Using MeshCollider results in higher processing overhead than primitive colliders, so it is best to use MeshColliders sparingly.

Note

Using TriangleMesh is only allowed if the Rigidbody is Kinematic.

Constraints

A constraint is used to connect a Rigidbody to another Rigidbody or a fixed point in space. Constraints apply forces that move rigid bodies, and limits restrict that movement.

FixedConstraint

FixedConstraint restricts an object’s movement to be dependent upon another object. The best scenarios for using them are when you have objects that you want to easily break apart from each other, or connect two object’s movement without parenting.

[image: FixedConstraint]

	Property

	Function

	Bodies Collision

	Enable/disable collision between linked bodies

	Other body

	Other Rigidbody or Softbody component

	Break Impulse

	The force that needs to be applied for this constraint to break.

HingeConstraint

The HingeConstraint groups together two Rigidbodies, constraining them to move like they are connected by a hinge.
It is perfect for doors, but can also be used to model chains, pendulums, etc…

[image: HingeConstraint]

	Property

	Function

	Bodies Collision

	Enable/disable collision between linked bodies

	Other body

	Other Rigidbody or Softbody component

	Break Impulse

	The force that needs to be applied for this constraint to break

	Anchor

	The position of the axis around which the body swings, in local space

	Axis1

	Rotation around Z

	Axis2

	Rotation around X

	Lower Limit

	The lowest angle the rotation can go

	Upper Limit

	The highest angle the rotation can go

SliderConstraint

A SliderConstraint allows a object controlled by Rigidbody to slide along a line in space, like sliding doors, for example.

	Property

	Function

	Bodies Collision

	Enable/disable collision between linked bodies

	Other body

	Other Rigidbody or Softbody component

	Lower Limit

	Lower limit of the slider

	Upper Limit

	Upper limit of the slider

SpringConstraint

The SpringConstraint joins two Rigidbodies together but allows the distance between them to change as though they were connected by a spring.

[image: SpringConstraint]

	Property

	Function

	Bodies Collision

	Enable/disable collision between linked bodies

	Other body

	Other Rigidbody or Softbody component

	Enable

	Enable/disable spring on X, Y, Z axis

	Stiffness

	Spring stiffness in X, Y, Z axis

	Damping

	Amount that the spring is reduced when active

	Lower Limit

	Lower limit of the distance range over which the spring will not apply any force

	Upper Limit

	Upper limit of the distance range over which the spring will not apply any force

Dof6SpringConstraint

Dof6SpringConstraint incorporate all the functionality of the other constraint types and provide greater customization.

[image: Dof6SpringConstraint]

	Property

	Function

	Bodies Collision

	Enable/disable collision between linked bodies

	Other body

	Other Rigidbody or Softbody component

	Lower Limit

	Lower limit of the axis

	Upper Limit

	Upper limit of the axis

	Target velocity

	Target velocity

	Bounce

	Bounciness

	Enable Spring

	Enable/disable spring

	Stiffness

	Spring stiffness value

	Damping

	Spring damping value

	Enable Motor

	Enable/disable motor

	Max Motor Force

	Max motor force

	Enable Servo

	Enable/disable Servo

	Servo Target

	Servo target

The first 3 dof axis are linear axis, which represent translation of rigidbodies,
and the latter 3 dof axis represent the angular motion. Each axis can be either locked, free or limited.

For each axis:

	Lowerlimit == Upperlimit -> axis is locked.

	Lowerlimit > Upperlimit -> axis is free.

	Lowerlimit < Upperlimit -> axis is limted in this range.

Check Bullet Physic manual document for more information.

Softbody

The soft body dynamics provides rope, cloth simulation and volumetric soft bodies, on top of the existing rigid body dynamics.
The Softbody component works with FigureComponent, it manipulates Figure meshes to simulate deformable objects like cloth, fluid, jelly,…

[image: Softbody]

[image: Softbody Component]

	Property

	Function

	CCD

	Enable/disable Continous Collision Detection mode

	Kinematic

	[Ignored] Softbody is Dynamic object as alway.

	Trigger

	Enable trigger collision events

	ActiveState

	Set activation state

	CollisionGroup

	Collision group value

	CollisionMask

	Collision mask value

	Mass

	The mass of the object (in kilograms by default).

	Friction

	Friction value

	Restitution

	Restitution value (aka bounciness value)

	LinearVelocity

	Linear velocity

	LinearFactor

	Linear factor

	LinearSleepThreshold

	Linear sleeping threshold

	AngularVelocity

	Angular velocity

	AngularFactor

	Angular factor

	AngularSleepThreshold

	Angular sleeping threshold

	PositionOffset

	[Ignored] Use mesh data without offset

	SelfCollision

	Enable/disable collision between parts of the shape

	SoftCollision

	Enable/disable soft collision

	SpringStiffness

	Spring stiffness value

	RestLengthScale

	Scale resting length of all springs

	NumIterations

	Positions solver iterations (pIterations)

	SleepThreshold

	Sleeping threshold

	GravityFactor

	Gravity factor

	VelocityFactor

	Velocities correction factor (kVCF)

	DampingCoeff

	Damping coefficient value (kDP)

	PressureCoeff

	Pressure coefficient value (kPR)

	VolumeConvCoeff

	Volume conversation coefficient [kVC]

	FrictionCoeff

	Dynamic friction coefficient (kDF)

	PoseMatchCoeff

	Pose matching coefficient (kMT)

	RigidHardness

	Rigid contacts hardness (kCHR)

	KineticHardness

	Kinetic contacts hardness (kKHR)

	SoftHardness

	Soft contacts hardness (kSHR)

	AnchorHardness

	Anchors hardness (kAHR)

	AeroModel

	Aerodynamic model (default: V_Point)

	V_Point: Vertex normals are oriented toward velocity

	V_TwoSided: Vertex normals are flipped to match velocity

	V_TwoSidedLiftDrag: Vertex normals are flipped to match velocity and lift and drag forces are applied.

	V_OneSided: Vertex normals are taken as it is

	F_TwoSided: Face normals are flipped to match velocity

	F_TwoSidedLiftDrag: Face normals are flipped to match velocity and lift and drag forces are applied

	F_OneSided: Face normals are taken as it is

	WindVelocity

	Wind velocity for interaction with the air

	Constraints

	List of constraints applied

Softbody also works with all type of Constraints, together with Rigidbodies or other Softbodies.

Check Bullet Physic manual document for more information.

PhysicManager

The PhysicManager is automatically created and attached to the root object, to have the global setting of the Physic system.

[image: PhysicManager]

	Property

	Function

	Deformable

	Enable/disable physic with Softbody simulation

	Debug

	Show Physic debug

	NumIterations

	Number of iterations per frame

	NumSubsteps

	Number of substeps. If NumSubSteps > 0, interpolate motion between fixedTimeStep

	TimeStep

	Fixed time step value (default: 1/60)

	UpdateRatio

	Update ratio, useful to do slow motion effect

	Gravity

	Global gravity value

Please refer to Bullet Physic Manual#1 and Python API Document document for more details of Physic usage using IGE.

Footnotes

	#1

	https://github.com/bulletphysics/bullet3/tree/master/docs

Navigation

The navigation system allows you to create characters that can intelligently move around the game world, using navigation meshes that are created automatically from your Scene geometry.
Dynamic obstacles allow you to alter the navigation of the characters at runtime, while off-mesh links let you build specific actions like opening doors or jumping down from a ledge.

IGE Navigation system implement Recast & Detour libraries#1 which provide both navigation mesh contruction toolset and path-finding toolkit.

[image: NavMesh]

NavMesh

NavMesh is a data structure which describes the walkable surfaces of the game world and allows to find path from one walkable location to another in the game world. The data structure is built automatically from your level geometry.

NavMesh collects geometry from its child nodes that have been tagged with the Navigable component. By default the Navigable component behaves recursively, unless the recursion is disabled.

The easiest way to make the whole scene participate in navigation mesh generation is to create the NavMesh component to the scene root node, and Navigable to the game object that act as navigating routes.

The navigation mesh generation must be triggered manually by pressing “Build” button which canbe found in NavMesh inspector window.

[image: NavMesh]

	Property

	Function

	Debug

	Draw debug

	Build

	Build NavMesh data

	TileSize

	The width/height size of tile’s on the xz-plane

	CellSize

	The xz-plane cell size to use for fields

	CellHeight

	The y-axis cell size to use for fields

	AgentHeight

	Agent height

	AgentRadius

	Agent radius

	AgenMaxClimb

	Maximum ledge height that is considered to still be traversable

	AgentMaxSlope

	The maximum slope that is considered walkable

	RegionMinSize

	The minimum number of cells allowed to form isolated island areas

	RegionMergeSize

	Regions with span count smaller than this will be merged with larger regions

	EdgeMaxLength

	The maximum allowed length for contour edges along the border of the mesh

	EdgeMaxError

	The maximum distance a contour’s border edges should deviate original contour

	SampleDistance

	The sampling distance to use when generating the detail mesh

	SampleMaxError

	The maximum distance the detail mesh surface should deviate from heightfield

	Padding

	The bounding box padding to generate navigation data

	PartitionType

	Partitioning type:

	Watershed: build distance fields and regions data

	Monotone: build monotone regions (faster but less accurate)

Note

NavMesh does not support NavObstacle to be added dynamictically at runtime. So, it’s better to be used with static geometry only.

DynamicNavMesh

DynamicNavMesh supports the addition and removal of dynamic obstacles.
Using DynamicNavMesh has the trade-off over traditional NavMesh is that it will cost almost twice the memory consumption.
However, the addition and removal of obstacles is significantly faster than partially rebuilding a NavMesh.

[image: DynamicNavMesh]

	Property

	Function

	Debug

	Draw debug

	Build

	Build NavMesh data

	TileSize

	The width/height size of tile’s on the xz-plane

	CellSize

	The xz-plane cell size to use for fields

	CellHeight

	The y-axis cell size to use for fields

	AgentHeight

	Agent height

	AgentRadius

	Agent radius

	AgenMaxClimb

	Maximum ledge height that is considered to still be traversable

	AgentMaxSlope

	The maximum slope that is considered walkable

	RegionMinSize

	The minimum number of cells allowed to form isolated island areas

	RegionMergeSize

	Regions with span count smaller than this will be merged with larger regions

	EdgeMaxLength

	The maximum allowed length for contour edges along the border of the mesh

	EdgeMaxError

	The maximum distance a contour’s border edges should deviate original contour

	SampleDistance

	The sampling distance to use when generating the detail mesh

	SampleMaxError

	The maximum distance the detail mesh surface should deviate from heightfield

	Padding

	The bounding box padding to generate navigation data

	PartitionType

	Partitioning type:

	Watershed: build distance fields and regions data

	Monotone: build monotone regions (faster but less accurate)

	MaxObstacle

	Max number of obstacles allowed (lower is better)

	MaxLayer

	Maximum number of layers that are allowed to be constructed

Navigable

Navigable is a Component which tags geometry for inclusion in the navigation mesh. Optionally auto-includes geometry from child nodes.

[image: Navigable]

	Property

	Function

	Recursive

	Whether geometry is collected from child nodes

NavArea

NavArea is a utility to mark a region differentiate with others, and potential have different navigation cost to travel through.
It’s useful to predefine all type of areas, such as Ground, Water, Sand, Snow … as areaId, up to 64 different area types.
The areaId then assigned to NavArea component, to configure traversal cost for the agent to go through.

[image: NavArea]

	Property

	Function

	ID

	Area Id, from 0 - 62

Navigation System supports different filters for each type of NavAgent, up to 16 types.
For each agent type, the area cost canbe configured separately, providing abilities to customize agent behaviors.

To configure area cost for each area, for each type of agent, use Python API Document, as below:

from igeScene import Script, NavAgentManager
from enum import Enum

class AgentType(Enum):
 MC = 0
 NPC = 1

class AreaType(Enum):
 GROUND = 63
 WATER = 0
 SNOW = 1

class AgentManager(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.navAgentManager = None

 def onStart(self):
 self.navAgentManager = owner.getComponent("NavAgentManager")
 self.navAgentManager.setAreaCost(AgentType.MC, AreaType.GROUND, 1.0)
 self.navAgentManager.setAreaCost(AgentType.MC, AreaType.WATER, 5.0)
 self.navAgentManager.setAreaCost(AgentType.MC, AreaType.SNOW, 2.0)
 self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.GROUND, 1.0)
 self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.WATER, 100.0)
 self.navAgentManager.setAreaCost(AgentType.NPC, AreaType.SNOW, 2.0)

Note

For regions which are not marked using NavArea, it will have areaId set to 63, and areaCost set to 1, by default.

OffMeshLink

Off-Mesh Links are used to create paths crossing outside the walkable navigation mesh surface.
For example, jumping over a ditch or a fence, or opening a door before walking through it, can be all described as Off-mesh links.

To use OffMeshLink optimally, follow steps below:

	First create two cylinders, scale to (0.1, 0.2, 0.1) to make it easier to work with them.

	Move the first cylinder inside the first NavMesh surface.

	Move the second cylinder inside the other NavMesh surface, at the location where the link should land.

	Select the first cylinder and add an OffMeshLink component to it.

	Drag the second cylinder from Hierarchy to the Endpoint in the Inspector.

If the path via the off-mesh link is shorter than via walking along the Navmesh, the off-mesh link will be used.

[image: OffMeshLink]

	Property

	Function

	Endpoint

	The endpoint object, which position is the landing position.

	Bidirectional

	If enabled, the link can be traversed in either direction.

	Radius

	Radius of the link, where the center point is object position.

	Mask

	Off-Mesh link mask

	AreaId

	Area Id, which pre-setup for traversal cost.

NavAgent

NavAgent components help you to create characters which avoid each other and obstacles while moving towards their goal.

[image: NavAgent]

	Property

	Function

	SyncPosition

	Update position by NavAgentManager, or not

	Radius

	The agent’s radius

	Height

	The agent’s height

	MaxAccel

	The agent’s max acceleration

	MaxSpeed

	The agent’s max velocity

	TargetPos

	Target position to travel to

	FilterType

	The agent’s filter type

	NavQuality

	The agent’s navigation quality

	NavPushiness

	The agent’s navigation pushiness

The NavAgent handles both the pathfinding and the movement control of a character.
In your scripts, navigation can be as simple as setting the desired destination point:

from igeScene import Script, NavAgent
import igeVmath as vmath

class MCAgent(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.navAgent = None

 def onStart(self):
 self.navAgent = owner.getComponent("NavAgent")
 self.navAgent.targetPosition = vmath.vec3(10, 10, 10)

NavObstacle

NavObstacle components can be used to describe obstacles the agents should avoid while navigating.
For example the agents should avoid physics controlled objects, such as crates and barrels while moving.

To do this, add NavObstacle component to the object, then configure it’s properties:

[image: NavObstacle]

	Property

	Function

	Radius

	The obstacle’s radius

	Height

	The obstacle’s height

Then the NavAgent will avoid the obstacle object while navigating, even if the object is moving around.

Note

NavObstacle only works with DynamicNavMesh. It’s ignored if the scene use NavMesh instead.

NavAgentManager

NavAgentManager is used to control the navigating of all NavAgents in the Scene.
It’s automatically created when creating NavMesh or DynamicNavMesh, and usually added to the root object of the Scene.

[image: NavAgentManager]

	Property

	Function

	Max Agents

	Max number of agents

	Max Agent Radius

	The agent’s max radius

NavAgentManager also provides useful functions to control the agents by using Python Script. Refer to Python API Document for more information.

Footnotes

	#1

	https://github.com/recastnavigation/recastnavigation

Particle System

IGE Particle system implements Effekseer#1, allows playing effects created with Effekseer on IGE Engine.

Effekseer Editor

Effekseer is a tool that allows easy creation of beautiful particle effects for games and movies.

[image: Effekseer Editor]

Check the Effekseer Tutorial#2 to learn how to work with Effekseer Editor.

Note

IGE Engine implements Effekseer 1.60c runtime, which supports loading effects produced by the Effekseer version 1.6x.

Particle

Particle component is used to load and display Effekseer effect in IGE Engine. It canbe used both in 3D and UI objects.

To add particle effects to your project, follow steps below:

	Create effect using Effekseer Editor, or download effect from sample repo.

	Copy your effect files (.efk), textures, sounds, materials, etc. into <project>/effects folder.

	Add Particle component to the game object.

	Drag & drop the .efk file to the Inspector

	Configure the effect parameters

[image: Particle]

	Property

	Function

	Effect

	Path to .efk file, inside effects folder

	Loop

	Enable/disable loop

	AutoDraw

	Auto play and draw particle when loaded

	GroupMask

	Particle group mask, useful to control particles using Python Script.

	Speed

	Playing speed

	TimeScale

	Playing time scale, also affect displaying speed

	TargetPos

	Target position (used by particle effect)

	Parameters

	Particle parameters

	Color

	Particle diffuse color

An example of using particle:

[image: Particle Example]

Note

In UI node, the effect may appear bigger because of scaling, just need to set the scale parameter to make it reasonable.

ParticleManager

ParticleManager is used to manage Particle instance and global configuration. It is automatically added to the root object when a Particle is used.

[image: ParticleManager]

	Property

	Function

	Culling

	Enable/disable particle culling

	Culling World Size

	Culling world size

	Culling Layers

	Number of culling layers

	Max Particles

	Max number of particle intances

	Number Threads

	Number of running threads

For more information about Particle System, refer to Effekseer Document#3, and Python API Document.

Footnotes

	#1

	https://effekseer.github.io/en/index.html

	#2

	https://effekseer.github.io/en/documentation.html

	#3

	https://github.com/effekseer/Effekseer

Platform Configuration

IGE Creator works on Windows and MacOS workstation. The engine supports building games for Windows, MacOS, iOS, Android and WebGL platforms.

Dependencies

Windows Workstation

In order to work with IGE Engine on Windows machine, please make sure to install softwares below:

	Chocolatey installed from Chocolatey#1

	Python 3.9.x, 64 bit installed

	igeCore installed with ‘python -m pip install igeCore’

	Git installed

	CMake 3.18.x installed (‘choco install cmake –version=3.18.1’)

	Visual Studio 19 with C++ Desktop components is required for Windows runtime.

	Java SDK 11, Android Studio and Android SDK are required for Android runntime.

	MinGW (‘choco install mingw’) and Emscripten (‘choco install emscripten’) are required for WebGL runtime.

Note

On Windows, igeCreator supports build for Windows, Android and WebGL platforms.

Note

Please remove Python 3.10 after installing emscripten, as support Python 3.10 is not yet ready with IGE.

MacOS Workstation

In order to work with IGE Engine on Windows machine, please make sure to install softwares below:

	Homebrew installed

	Python 3.9.x, 64 bit installed with ‘brew install python3.9’

	igeCore installed with ‘python3.9 -m pip install igeCore’

	Cocoa Pod installed (‘sudo gem install cocoapods’)

	XCode installed

	Git client installed

	Oracle Java SDK 11, Android Studio and Android SDK are required for Android runntime.

	Emscripten (‘brew install emscripten’) are required for WebGL runtime.

Note

The igeCreator runs on Intel-based MacOS computer only, Apple Silicon support is WIP.

Note

On macOS, igeCreator supports build for macOS, iOS, Android and WebGL platforms.

Build Menu

To start building for a specific platform, access the Menu -> Build as below:

[image: Build Menu]

Project Setting Panel

Generic Configuration

[image: Generic Configuration]

	Property

	Function

	Name

	Executable name

	Label

	Icon label

	VersionName

	Version came

	VersionCode

	Version code

	BuldleID

	iOS bundle ID, android package name

	Orientation

	Orientation: portrait / landscape

	StartScene

	Scene to start the game with.

	Dependencies

	List of modules used by the game.

Android Platform Settings

[image: Android Configuration]

	Property

	Function

	RomDir

	Rom directory, default to ‘mobile’

	ConfigDir

	Config directory, default to ‘config/android’

	Archs

	Architecture, default to ‘armeabi-v7a;arm64-v8a’

	MinSdkVersion

	Min Sdk Version

	TargetSdkVersion

	Target SDK Version

	Permissions

	List of required permissions

	Features

	List of using features

iOS Platform Settings

[image: iOS Configuration]

	Property

	Function

	RomDir

	Rom directory, default to ‘mobile’

	ConfigDir

	Config directory, default to ‘config/ios’

	Archs

	Architecture, default to ‘arm64’

	DeploymentTarget

	Deployment target, default to ‘11.0’

	DeviceFamily

	Device family, default to ‘1,2’ which mean iPhone and iPad

	DevelpomentTeamId

	Development team ID

	CodeSignIdentity

	Code sigining type: iPhone Distribution / iPhone Development

	ProvisioningProfile

	Provisioning profile, set to ‘Automatic’ for development build

Footnotes

	#1

	https://chocolatey.org/

Third-Person Shooter

Welcome to Indigames Game Engine tutorial series!

This tutorial will introduce how to work with IGE Engine to create a third-person shooter game.

Before starting, let make sure you have:

	IGE Engine: check Installation document if you haven’t have it installed.

	Tutorial Source Code: checkout ige-tutorials, branch 01-basic-scene#1 github repo.

1. About Scene

A scene is an abstract collection of game objects, representing a part of the game’s world created by using the scene editor.

IGE implements a scene structure using a Scene Object and Component system.

	The Scene Object manages the parent-child relationship of the Scene, and the spatial matrix transformation, so that all objects canbe managed and placed in the scene.

	The Component system allows Scene Object to have a variety of advanced features, such as Graphic components, Animation components, Light components, Audio components, and more.

The typical workflow of using Scene Object is to:

	Create a Scene Object

	Add Components

	Write Scripts that change the properties and behaviors of these Components

Create Object

To create a game object, right click on an item in the Hierarchy , select Create, then it will show Object Creation Menu with many types of object.

[image: Object Creation Menu]

Alternative, drag the assets to the Scene View, it will also create object with the type based on the file extension.

Add Components

To add a component to a scene object, select it in the Scene view or Hierarchy, then in the Inspector select Add Component, it will show the Add Component Menu.

[image: Add Component Menu]

Creating scene object with Object Creation Menu or by dragging assets will add component related to the object types.

Scripting

Indigames Game Engine allow writing Python Script to control the scene object behavior.
The Script canbe attached to an object using Script component, and canbe accesses using getComponent(<class_name>) from other scripts.

2. Scene Setup

Open The Scene

Open the project using igeCreator, you will see a screen similar to this:

[image: Basic Scene View]

Scene Navigation

Try to navigate the Scene using Scene View controls:

	Action

	Input

	Rotate

	[Mouse] Drag Right Button

	Zoom

	[Mouse] Scroll Middle Button

	Move

	[Mouse] Drag Middle Button

	Focus

	[Keyboard] Press F Key

Scene Management

Try adding new game object to make the environment more beautiful, by using Object Creation Menu and dragging assets from figures folder.

Also, try to modify the environment by adjust objects’ position, rotation and scale values to change the environment layout as per your preferences.

Save the Scene using Ctrl + S, or File -> Save Scene.

3. Background Music

To play an audio clip, we need to use AudioSource component, either by dragging the audio file to scene to create new object with AudioSource attached, or just to add AudioSource component to an existing object.
To make it simple, select root object, add AudioSource component, then drag the audio/bgm.mp3 file to the inspector.
The background music should be play once loaded, and should be looped as well. To save memory, it can also be streamed.

Let’s add the background music to the Environment object, like as below:

[image: Background Music]

Also, AudioListener is required to act as a listener in 3D space, it’s usually added to the active camera.
So, let’s add AudioListener to the Default Camera object:

[image: Background Music]

Save the Scene, then press Play button, the background music should be played and looped during the playing session.

4. Character Movement

Checkout ige-tutorials, branch 02-character-movement#2 github repo.

Add MC

The MC prefab is located in prefabs/MC.prefab folder. Add the MC to the scene by dragging the prefab file in the Scene View.

In the Inspector, you can see the MC already have:

	Figure: using model from figures/characters/NoMan.dae

	Animator: using animator controller from animators/Player.anim

	CapsuleCollider and Rigidbody: Physic simulation

	Script: movement script located at scripts/PlayerMovement

[image: Main Character]

Character Animation

IGE Animation makes use of Animator Controller, which control the animation using State Machine defined in .anim file.

Open animators/Player.anim by double clicking the file icon in AssetBrowser, the Animator Editor appears like below:

[image: Player Animator]

Every animator controller implements internal state machine system, which consists at least Entry, Exit and Any states.
The Entry state help to configure the initial state of the animation. The Exit state is to end animation. And the Any state is a helper state to simplify the state diagram.

The player has other three states: Idle, Move, Dead.

To decide what state to play next, the Parameters and Conditions can be used.

	Parameters: define global parameters and their values.

	Conditions: attached to each transition, with compare the parameters’ values which predefined threshold.

The animation transition happens when all conditions are meet, or HasExitTime checked and the ExitTime value reached.

The animation is controllable using Python Script, by setting the parameters’ values at runtime.

Character Physic

In the Inspector, the character object includes a Capsule collider and a Ridgidbody.
This is a dynamic object, thus IsKinematic is set to false.

Note

Notice that, the movement along Y-Axis is fixed, by setting the second parameter of LinearFactor to zero.
Also, the rotation along X-Axis and Z-Axis is locked, by setting the first and the third parameters of AngularFactor to zero.

[image: MC Physic]

Character Movement Script

The PlayerMovement.py script is as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerMovement(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.speed = 2.0
 self._transform = None
 self._rigidbody = None
 self._animator = None
 self._movement = vmath.vec3(0, 0, 0)
 self._isWalking = False

 def onStart(self):
 self._transform = self.owner.getComponent("Transform")
 self._rigidbody = self.owner.getComponent("Rigidbody")
 self._animator = self.owner.getComponent("Animator")
 self._movement = vmath.vec3(0, 0, 0)
 self._isWalking = False

 def onUpdate(self, dt):
 h, v = [0, 0]
 if Keyboard.isPressed(KeyCode.KEY_W) or Keyboard.isPressed(KeyCode.KEY_UP):
 v = -1.0
 if Keyboard.isPressed(KeyCode.KEY_S) or Keyboard.isPressed(KeyCode.KEY_DOWN):
 v = 1.0
 if Keyboard.isPressed(KeyCode.KEY_A) or Keyboard.isPressed(KeyCode.KEY_LEFT):
 h = -1.0
 if Keyboard.isPressed(KeyCode.KEY_D) or Keyboard.isPressed(KeyCode.KEY_RIGHT):
 h = 1.0
 if h != 0 or v != 0:
 self._movement = vmath.vec3(h, 0, v)
 self._movement.normalize()
 self._movement = self._movement * self.speed * dt
 newRotation = vmath.quat_look_rotation(self._movement, vmath.vec3(0.0, 1.0, 0.0))
 self._rigidbody.moveRotation(newRotation)
 self._rigidbody.movePosition(self._transform.position + self._movement)
 if not self._isWalking:
 self._isWalking = True
 self._animator.setValue("isWalking", self._isWalking)
 elif self._isWalking:
 self._isWalking = False
 self._animator.setValue("isWalking", self._isWalking)

 def onDestroy(self):
 self._transform = None
 self._rigidbody = None
 self._animator = None
 self._playerHealth = None
 self._movement = None

Click Play button, then in the playing mode, the main character can be controlled by pressing arrow keys or WASD keys.
The character also has collision with the houses and other objects in the scene.

[image: MC]

5. Camera Setup

Checkout ige-tutorials, branch 03-camera-setup#3 github repo.

Navigate to Default Camera object, add a Script component.
Drag and drop scripts/CameraFollow.py from AssetBrowser to the newly created Script.
Lastly, drag and drop the NoMan from Hierarchy to target property, then select Transform.

[image: Camera Follow]

The CameraFollow.py script is as below:

from igeScene import Script
import igeVmath as vmath

class CameraFollow(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.target = None
 self.smoothing = 5.0
 self._offset = vmath.vec3()

 def onStart(self):
 if self.target is None:
 self.target = self.owner.scene.findObjectByName("MC").getComponent("Transform")
 if self.target is None:
 return
 self._offset = self.owner.transform.position - self.target.position

 def onUpdate(self, dt):
 targetCamPos = self.target.position + self._offset
 self.owner.transform.position = vmath.lerp(self.smoothing * dt, self.owner.transform.position, targetCamPos)

 def onDestroy(self):
 self.target = None
 self._offset = None

Save the scene, and after press Play, the camera will follow the main character while moving around.

[image: MC]

6. Add Enemy

Checkout ige-tutorials, branch 04-enemy-setup#4 github repo.

Like the MC, the Enemy prefab is added at prefabs/Enemy.prefab. Create an enemy by drag and drop the prefab to the root node in the Hierarchy.

In the Inspector, the Enemy object contains:

[image: Enemy Object]

	Figure: similar to MC, but the Diffuse Collor changed to Red instead of Blue.

	Animator: same as MC

	Rigidbody and Collider: same as MC

	NavAgent: use NavAgent to find and navigate the object in the map

	Script: EnemyMovement.py and EnemyHealth.py control the movement and heal of the enemy.

To enable NavAgent auto targeting, we also need to setup the NavMesh. The DynamicNavMesh component is added to NavigableArea object, along with Navigable component.

[image: NavMesh Setup]

The EnemyMovement.py script is as below:

from igeScene import Script
import igeVmath as vmath

class EnemyMovement(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.player = None
 self._transform = None
 self._navAgent = None
 self._rigidbody = None
 self._playerTransform = None
 self._playerHealth = None
 self._enemyHealth = None
 self._animator = None
 self._isWalking = False

 def onStart(self):
 self._transform = self.owner.getComponent("Transform")
 self._rigidbody = self.owner.getComponent("Rigidbody")
 self._navAgent = self.owner.getComponent("NavAgent")
 self._enemyHealth = self.owner.getComponent("EnemyHealth")
 self._animator = self.owner.getComponent("Animator")
 if self.player is None:
 self.player = self.owner.scene.findObjectByName("MC")
 if self.player is not None:
 self._playerTransform = self.player.getComponent("Transform")
 self._playerHealth = self.player.getComponent("PlayerHealth")

 def onUpdate(self, dt):
 if self._enemyHealth.hp > 0.0 and self._playerHealth.hp > 0.0:
 self._navAgent.targetPosition = self._playerTransform.position
 movement = self._playerTransform.position - self._transform.position
 movement.normalize()
 newRotation = vmath.quat_look_rotation(movement, vmath.vec3(0.0, 1.0, 0.0))
 self._rigidbody.moveRotation(newRotation)
 if not self._isWalking:
 self._isWalking = True
 self._animator.setValue("isWalking", self._isWalking)
 elif self._navAgent.hasTarget():
 self._navAgent.resetTarget()
 self._isWalking = False
 self._animator.setValue("isWalking", self._isWalking)

 def onDestroy(self):
 self.player = None
 self._transform = None
 self._navAgent = None
 self._rigidbody = None
 self._playerTransform = None
 self._playerHealth = None
 self._enemyHealth = None
 self._animator = None

The EnemyHealth.py script is as below:

from igeScene import Script

class EnemyHealth(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.maxHp = 20.0
 self.hp = 20.0
 self.scoreValue = 10
 self.sinkSpeed = 0.5
 self.hurtSfx = None
 self.deadSfx = None
 self._transform = None
 self._animator = None
 self._navAgent = None
 self._audio = None
 self._rigidbody = None
 self._isDead = False
 self._timer = 0

 def onStart(self):
 self.hp = self.maxHp
 self._isDead = False
 self._transform = self.owner.getComponent("Transform")
 self._animator = self.owner.getComponent("Animator")
 self._navAgent = self.owner.getComponent("NavAgent")
 self._audio = self.owner.getComponent("AudioSource")
 self._rigidbody = self.owner.getComponent("Rigidbody")

 def onUpdate(self, dt):
 if self._isDead:
 self._timer += dt
 if self._timer >= 1.0:
 self._transform.position += vmath.vec3(0, -1, 0) * self.sinkSpeed * dt
 if (self._transform.position.y < -5.0):
 self.owner.scene.removeObject(self.owner)

 def takeDamage(self, amount):
 self.hp -= amount
 self._animator.setValue("hp", self.hp)
 if self.hp <= 0.0:
 self.dead()
 else:
 self._audio.path = self.hurtSfx
 self._audio.play()

 def dead(self):
 if not self._isDead:
 self._isDead = True
 self._timer = 0.0
 self._navAgent.enable = False
 self._rigidbody.isKinematic = True
 self._audio.path = self.deadSfx
 self._audio.play()

 def onDestroy(self):
 self.hurtSfx = None
 self.deadSfx = None
 self._transform = None
 self._animator = None
 self._navAgent = None
 self._audio = None
 self._rigidbody = None

Click Play button, the Enemy will keep running toward the MC while he is moving around the map.

[image: MC]

7. GUI & HUD

In this section, we will add a health indicator and display score in the screen.

Add Score

Add SCORE: label:

	Right-click the UI node in Hierarchy, select Create -> GUI -> UIText, it will create new object with UIText component

	Select the new object, rename it as txtScore.

	In the Inspector, change Text to SCORE:.

	Go to AssetBrowser, open fonts/road_font, then drag the road_font.pybm to the Font section in Inspector.

	Change the Size to 24.

	Adjust the Anchor and Position like below:

[image: Score Textfield]

Add score value textfield:

	Select txtScore, right-click and select Create -> GUI -> UIText to create new textfield for score value.

	Rename the new object as txtScoreValue

	Adjust the Inspector elements like image below:

[image: Score Value Textfield]

Now the screen should show SCORE: 0 at the middle-top of the screen. We will show the real score in the next tutorial.

Add Health Bar

We can add HealthUI object to group the UI elements related to player health:

	Right-click the Canvas object, select Create -> New Object

	Name the new object as HealthUI.

	Adjust the RectTransform so that it will span the whole screen.

[image: HealthUI]

We add heart icon to indicate the player health:

	Right-click the HealthUI object, select Create -> GUI -> UIImage

	Name the new object as Heart

	Drag sprites/heart.png from AssetBrowser to the Inspector

	Adjust the RectTransform to pin the icon to the top-left of the screen

[image: Heart]

We also add a Health Bar, by using UISlider component:

	Right-click the HealthUI object, select Create -> GUI -> UISlider

	Name the new object as HealthSlider

	The health slider is changed automatically, so we need to remove the handle, by delete handleArea child object.

	Change the background color to light-red color, by selecting background, then adjust color accordingly.

	Change the fill color to light-green, by selecting fillArea -> fill object, then adjust the color to light-green

	Select the HealthSlider, then adjust the RectTransform like below:

[image: Health Slider]

To provide graphical feedback when player is being attacked, we add a splash effect, by using UIImage component.

	Right-click the HealthUI object, select Create -> GUI -> UIImage

	Name the new object as imgDamaged

	Drag sprites/white.png from AssetBrowser to the Inspector

	Adjust color alpha to 0

	Adjust the RectTransform to span the image full screen

[image: Damaged Image]

This should be enough to display player health and score to the screen.

[image: Added GUI]

Checkout ige-tutorials, branch 05-gui-hud#5 github repo.

8. MC Health

In this section, we will make the enemy attack, and adjust the player health on the UI accordingly.

Player Health

	In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

	In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter PlayerHealth in the textfield.

The PlayerHealth.py is as below:

import igeVmath as vmath
from igeScene import Script

class PlayerHealth(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.maxHp = 100.0
 self.hp = 100.0
 self.healthSlider = None
 self.damageImage = None
 self.flashSpeed = 5.0
 self.deadSfx = None
 self.hurtSfx = None
 self._animator = None
 self._audio = None
 self._damaged = False

 def onStart(self):
 self._animator = self.owner.getComponent("Animator")
 self._audio = self.owner.getComponent("AudioSource")
 self.hp = self.maxHp

 def onUpdate(self, dt):
 if self._damaged:
 self.damageImage.color = vmath.vec4(1.0, 0.0, 0.0, 0.3)
 else:
 self.damageImage.color = vmath.lerp(self.flashSpeed * dt, self.damageImage.color, vmath.vec4(1.0, 0.0, 0.0, 0.0))
 self._damaged = False

 def takeDamage(self, amount):
 self._damaged = True
 self.hp -= amount
 self._animator.setValue("hp", self.hp)
 self.healthSlider.value = self.hp
 if self.hp <= 0:
 self._audio.path = self.deadSfx
 self._audio.play()
 self.owner.getComponent("PlayerMovement").enable = False
 self.owner.getComponent("PlayerShoot").enable = False
 self.owner.getComponent("PlayerHealth").enable = False
 else:
 self._audio.path = self.hurtSfx
 self._audio.play()

 def onDestroy(self):
 self.healthSlider = None
 self.damageImage = None
 self.deadSfx = None
 self.hurtSfx = None
 self._animator = None
 self._audio = None

	Select MC object, create new Script component, drag scripts/PlayerHealth.py to the path.

	Drag HealthSlider to the Inspector, in healthSlider textfield, select UISlider

	Drag imgDamaged to the Inspector, in damageImage textfield, select UIImage

	Drag audio/player_hurt.wav and audio/player_death.wav audio to the inspector in hurtSfx and deadSfx textfields.

	Save the prefab, select reload prefab when asked.

Enemy Attack

	In AssetBrowser, open prefabs/Enemy.prefab by double-clicking it.

	In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter EnemyAttack in the textfield.

	Select Enemy object, create new Script component, drag scripts/EnemyAttack.py to the path.

	Save the prefab, select reload prefab when asked.

The EnemyAttack.py is as below:

from igeScene import Script

class EnemyAttack(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.timeBetweenAttack = 1.0
 self.attackDamage = 10
 self._animator = None
 self._player = None
 self._playerHealth = None
 self._enemyHealth = None
 self._playerInRange = False
 self._timer = 0.0

 def onStart(self):
 self._player = self.owner.scene.findObjectByName("MC")
 if self._player is not None:
 self._playerHealth = self._player.getComponent("PlayerHealth")
 self._enemyHealth = self.owner.getComponent("EnemyHealth")
 self._animator = self.owner.getComponent("Animator")

 def onTriggerStart(self, other):
 if other == self._player:
 self._playerInRange = True

 def onTriggerStop(self, other):
 if other == self._player:
 self._playerInRange = False

 def onUpdate(self, dt):
 self._timer += dt
 if self._timer >= self.timeBetweenAttack and self._playerInRange and self._enemyHealth.hp > 0:
 self.attack()

 def attack(self):
 self._timer = 0.0
 if self._playerHealth.hp > 0:
 self._playerHealth.takeDamage(self.attackDamage)

 def onDestroy(self):
 self._animator = None
 self._player = None
 self._playerHealth = None
 self._enemyHealth = None

Save the scene, press Play button, now if player is near to the enemy, he will be attacked and his health will be updated in HUD.

[image: Added GUI]

Checkout ige-tutorials, branch 06-player-health#6 github repo.

9. MC Shooting

In this section, we will equip the MC with a gun and allow him to shoot enemy.

Add Gun to MC

	In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

	Select MC object, right-click, select New Object, rename it to Gun.

	Select Gun, add Figure component, drag figures/weapons/Gun.dae to Path.

	Adjust Transform component as below:

[image: Player Gun]

	Save the prefab.

Add Fire Particle

	In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

	Select Gun, right-click, select New Object, rename it to fxShoot.

	Select fxShoot, create Particle component, drag effects/shot_effect/shot_eff.efk to Effect.

	Adjust Transform component as below:

[image: Shoot Effect]

	Save the prefab.

Add Smoke Particle

	In AssetBrowser, open prefabs/Enemy.prefab by double-clicking it.

	Select Enemy, right-click, select New Object, rename it to fxSmoke.

	Select fxShoot, create Particle component, drag effects/smoke_effect/smoke.efk to Effect.

	Adjust Transform component as below:

[image: Smoke Effect]

	Save the prefab.

Player Shooting

	In AssetBrowser, open prefabs/MC.prefab by double-clicking it.

	In AssetBrowser, create new script by navigating to scripts, then right-click, select New Script, enter PlayerShoot in the textfield.

The PlayerHealth.py is as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerShoot(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.attackDamage = 20.0
 self.attackRange = 100.0
 self.timeBetweenAttack = 0.15
 self.shootSfx = None
 self.shootFx = None
 self._transform = None
 self._audio = None
 self._physic = None
 self._playerHealth = None
 self._timer = 0.0

 def onStart(self):
 self._transform = self.owner.getComponent("Transform")
 self._audio = self.owner.getComponent("AudioSource")
 self._physic = self.owner.scene.root.getComponent("PhysicManager")
 self._playerHealth = self.owner.getComponent("PlayerHealth")

 def onUpdate(self, dt):
 self._timer += dt
 if self._playerHealth.hp > 0 and Keyboard.isPressed(KeyCode.KEY_SPACE):
 self.shoot()

 def shoot(self):
 if self._timer < self.timeBetweenAttack:
 return
 self._timer = 0.0
 self._audio.path = self.shootSfx
 self._audio.play()
 self.shootFx.play()

 hit = self._physic.rayTestClosest(self._transform.position, self._transform.forward * self.attackRange)
 if hit is not None:
 hitObject = hit["hitObject"]
 hitPosition = hit["hitPosition"]
 hitPosition.y += 0.3
 enemyHealth = hitObject.getComponent("EnemyHealth")
 if enemyHealth is not None and enemyHealth.hp > 0.0:
 enemyHealth.takeDamage(self.attackDamage)
 smokeFx = hitObject.findChildByName("fxSmoke")
 if smokeFx is not None:
 smokeFx.getComponent("Transform").position = hitPosition
 smokeFx.getComponent("Particle").play()

 def onDestroy(self):
 self.shootSfx = None
 self.shootFx = None
 self._transform = None
 self._audio = None
 self._physic = None
 self._playerHealth = None

	Select MC object, add Script component, drag scripts/PlayerShoot.py to Path.

	Drag fxShoot to the Inspector, in the shootFx textfield

	Drag audio/player_shoot.wav to the shootSfx in the inspector.

	Save the prefab.

Update Score

We need to add ScoreManager script to the root object to manage game score:

	In AssetBrowser, navigate to scripts, create new script called ScoreManager.py.

The ScoreManager.py is as simple as below:

from igeScene import Script

class ScoreManager(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.scoreTxt = None
 self._score = 0

 def onStart(self):
 self._score = 0

 def score(self, value):
 self._score += value
 if self.scoreTxt is not None:
 self.scoreTxt.text = str(self._score)

 def onDestroy(self):
 self.scoreTxt = None

	Select main object, attach ScoreManager.py to it.

	Drag txtScoreValue from the UI to scoreTxt in the Inspector.

	Save the scene.

To add score, update EnemyHealth.py as below:

from igeScene import Script
import igeVmath as vmath

class EnemyHealth(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.maxHp = 20.0
 self.hp = 20.0
 self.scoreValue = 10
 self.sinkSpeed = 0.5
 self.hurtSfx = None
 self.deadSfx = None
 self._transform = None
 self._animator = None
 self._navAgent = None
 self._audio = None
 self._rigidbody = None
 self._scoreManager = None
 self._isDead = False
 self._timer = 0

 def onStart(self):
 self.hp = self.maxHp
 self._isDead = False
 self._transform = self.owner.getComponent("Transform")
 self._animator = self.owner.getComponent("Animator")
 self._navAgent = self.owner.getComponent("NavAgent")
 self._audio = self.owner.getComponent("AudioSource")
 self._rigidbody = self.owner.getComponent("Rigidbody")
 self._scoreManager = self.owner.scene.root.getComponent("ScoreManager")

 def onUpdate(self, dt):
 if self._isDead:
 self._timer += dt
 if self._timer >= 1.0:
 self._transform.position += vmath.vec3(0, -1, 0) * self.sinkSpeed * dt
 if (self._transform.position.y < -5.0):
 self.owner.scene.removeObject(self.owner)

 def takeDamage(self, amount):
 self.hp -= amount
 self._animator.setValue("hp", self.hp)
 if self.hp <= 0.0:
 self.dead()
 else:
 self._audio.path = self.hurtSfx
 self._audio.play()

 def dead(self):
 if not self._isDead:
 self._isDead = True
 self._timer = 0.0
 self._navAgent.enable = False
 self._rigidbody.isKinematic = True
 self._audio.path = self.deadSfx
 self._audio.play()
 self._scoreManager.score(self.scoreValue)

 def onDestroy(self):
 self.hurtSfx = None
 self.deadSfx = None
 self._transform = None
 self._animator = None
 self._navAgent = None
 self._audio = None
 self._rigidbody = None
 self._scoreManager = None
 self._timer = None

Press Play button, the MC now can shoot enemy by pressing SPACE. Once enemy dead, the score will be added and updated in the UI.

[image: Added Player Shooting]

Checkout ige-tutorials, branch 07-player-shooting#7 github repo.

10. Game Over

In this section, we will spawn enemy around the map, and calculate condition to make the game over, as well as provide ability to replay the game.

Game Over UI

The Game Over UI is as simple as below:

[image: Game Over UI]

We display a layer with transparent red color, on top of that is Game Over text, and a Replay button to allow player to replay.
In the AssetBrowser, add new script called ReplayBtn.py in scripts/gui folder, then attach the script to the Replay button.

Spawning Enemy

We add some spawning point in the map, for examples at the Restaurant and in the Hut object. We mark the point by adding dummy objects named SpawnPoint_xx.

Next, we create EnemyManager script, and attach it to the root node of the scene.

The EnemyManager.py is as below:

from igeScene import Script
import random

class EnemyManager(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.player = None
 self.enemyPrefab = None
 self.spawnTime = 3.0
 self.spawnPoint = None
 self.spawnPoint2 = None
 self.spawnPoint3 = None
 self._playerHealth = None
 self._spawnTimer = 0.0
 self._spawnPoints = None
 self._enemyId = 0

 def onStart(self):
 self._enemyId = 0
 if self.player is None:
 self.player = self.owner.scene.findObjectByName("MC")
 if self.player is None:
 return
 self._playerHealth = self.player.getComponent("PlayerHealth")
 self._spawnPoints = []
 if self.spawnPoint is not None:
 self._spawnPoints.append(self.spawnPoint)
 if self.spawnPoint2 is not None:
 self._spawnPoints.append(self.spawnPoint2)
 if self.spawnPoint3 is not None:
 self._spawnPoints.append(self.spawnPoint3)

 def onUpdate(self, dt):
 self._spawnTimer += dt
 if self._spawnTimer >= self.spawnTime:
 self.spawn()

 def spawn(self):
 if self._playerHealth.hp <= 0:
 return
 spawnIndex = random.randrange(0, len(self._spawnPoints))
 self.owner.scene.loadPrefab(self.enemyPrefab, f"Enemy_{self._enemyId}", self.owner.scene.root, self._spawnPoints[spawnIndex].position)
 self._enemyId += 1
 self._spawnTimer = 0.0

 def onDestroy(self):
 self.player = None
 self.enemyPrefab = None
 self.spawnPoint = None
 self.spawnPoint2 = None
 self.spawnPoint3 = None
 self._playerHealth = None
 self._spawnPoints = None

After attaching the script:

	Drag MC to player textbox

	Drag prefabs/Enemy.prefab from AssetBrowser to enemyPrefab textbox

	Drag SpawnPoint_xx to the spawnPointxx textbox

	Save the scene.

Game Over Script

Create new script named GameManager.py and attach to the root object.

The content of GameManager.py is as below:

from igeScene import Script, SceneManager

class GameManager(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self._gameOverUI = None

 def onStart(self):
 self._gameOverUI = self.owner.scene.findObjectByName("GameOverUI")
 self._gameOverUI.active = False

 def play(self):
 SceneManager.getInstance().reloadScene()

 def gameOver(self):
 self._gameOverUI.active = True

 def onDestroy(self):
 self._gameOverUI = None

When MC’s health fall below zero, the Game Over screen should appear. Edit PlayerHealth.py as below:

from igeScene import Script, SceneManager
import igeVmath as vmath
from igeScene import Script

class PlayerHealth(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.maxHp = 100.0
 self.hp = 100.0
 self.healthSlider = None
 self.damageImage = None
 self.flashSpeed = 5.0
 self.deadSfx = None
 self.hurtSfx = None
 self._animator = None
 self._audio = None
 self._damaged = False

 def onStart(self):
 self._animator = self.owner.getComponent("Animator")
 self._audio = self.owner.getComponent("AudioSource")
 self.hp = self.maxHp

 def onUpdate(self, dt):
 if self._damaged:
 self.damageImage.color = vmath.vec4(1.0, 0.0, 0.0, 0.3)
 else:
 self.damageImage.color = vmath.lerp(self.flashSpeed * dt, self.damageImage.color, vmath.vec4(1.0, 0.0, 0.0, 0.0))
 self._damaged = False

 def takeDamage(self, amount):
 self._damaged = True
 self.hp -= amount
 self._animator.setValue("hp", self.hp)
 self.healthSlider.value = self.hp
 if self.hp <= 0:
 self._audio.path = self.deadSfx
 self._audio.play()
 self.owner.getComponent("PlayerMovement").enable = False
 self.owner.getComponent("PlayerShoot").enable = False
 self.owner.getComponent("PlayerHealth").enable = False
 self.owner.scene.root.getComponent("GameManager").gameOver()
 else:
 self._audio.path = self.hurtSfx
 self._audio.play()

 def onDestroy(self):
 self.healthSlider = None
 self.damageImage = None
 self.deadSfx = None
 self.hurtSfx = None
 self._animator = None
 self._audio = None

Replay The Game

For this tutorial, replay the game is as simple as reload the scene from the beginning.

Edit ReplayBtn.py as below:

from igeScene import Script

class ReplayBtn(Script):
 def __init__(self, owner):
 super().__init__(owner)

 def onUpdate(self, dt):
 pass

 def onClick(self):
 self.owner.scene.root.getComponent("GameManager").play()

Play the game now, when being attacked by enemy, if the HC’s health fall below zero, the Game Over screen will be shown, and user will be able to replay the game by press Replay button.

[image: Game Over]

Checkout ige-tutorials, branch 08-game-over#8 github repo.

11. Mobile Control

On mobile device, access to Keyboard is very limited. We should add UI elements to move the player, and allow shooting with touch screen.

Shoot Button

	Select Canvas object, add new UIButton, name it as btnShoot.

	In the Inspector, change the Transition Mode to Sprite Swap.

	Set the Normal state to sprites/joystick/joystick_p.png

	Set press Pressed state to sprites/joystick/joystick.png

	Create new Script in scripts/gui, named ShootBtn.py, then attach to the btnShoot object.

	Adjust the RectTransform as below:

[image: Shoot Button]

The content of ShootBtn.py is as below:

from igeScene import Script

class ShootBtn(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.player = None
 self._playerShoot = None

 def onStart(self):
 if self.player is None:
 if self.player = self.owner.scene.findObjectByName("MC")
 if self.player is not None:
 self._playerShoot = self.player.getComponent("PlayerShoot")

 def onClick(self):
 if self._playerShoot is not None:
 self._playerShoot.shoot()

 def onDestroy(self):
 self.player = None
 self._playerShoot = None

Movement JoyStick

There is no JoyStick component, but we can make it using UIImage.

	Select Canvas, add new UIImage, name it as jsMove.

	In the Inspector, drag sprites/joystick/joystick.png to Path.

	Adjust the size to 96 x 96 pixels.

	Adjust the RectTransform as below:

[image: Move JoyStick]

	Select jsMove, add new UIImage, name it as jsMoveCtrl.

	In the Inspector, drag sprites/joystick/joystick_p.png to Path.

	Adjust the size to 48 x 48 pixels.

	Create new Script in scripts/gui, named JoyStick.py:

from igeScene import Script
import igeVmath as vmath
from igeCore.input.touch import Touch

class JoyStick(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.moveCtrl = None
 self._value = vmath.vec2(0, 0)
 self._maxSize = 0
 self._pressed = False
 self._pressedPosition = vmath.vec3(0, 1, 0)
 self._fingerId = -1
 self._transform = None
 self._scene = None

 def onStart(self):
 self._transform = self.owner.getComponent("RectTransform")
 self._maxSize = max(self._transform.size.x, self._transform.size.y) * 0.5
 self._scene = self.owner.scene
 self._value = vmath.vec2(0, 0)
 if self.moveCtrl is not None:
 self._moveTransform = self.moveCtrl.getComponent("RectTransform")

 def clamp(self, n, smallest, largest):
 return max(smallest, min(n, largest))

 def onUpdate(self, dt):
 for i in range(0, Touch.count()):
 pos = Touch.getPosition(i)
 if Touch.isPressed(i):
 hit = self._scene.raycastUI(pos)
 if hit["hitObject"].name == self.owner.name or hit["hitObject"].name == self.moveCtrl.name:
 self._pressed = True
 self._pressedPosition = hit["hitPosition"]
 self._pressedPosition.z = 0
 self._value = vmath.vec2(0, 0)
 self._fingerId = Touch.getId(i)
 elif Touch.isMoved(i):
 if self._pressed and self._fingerId == Touch.getId(i):
 hit = self._scene.raycastUI(pos)
 newPos = hit["hitPosition"]
 newPos.z = 0
 diff = hit["hitPosition"] - self._pressedPosition
 self._pressedPosition = hit["hitPosition"]
 if self._moveTransform is not None and self._maxSize > 0:
 position = self._moveTransform.localPosition + diff
 position.x = self.clamp(position.x, -self._maxSize, self._maxSize)
 position.y = self.clamp(position.y, -self._maxSize, self._maxSize)
 self._moveTransform.localPosition = position
 self._value = vmath.vec2(position.x / self._maxSize, position.y / self._maxSize)
 elif Touch.isReleased(i):
 if self._pressed and self._fingerId == Touch.getId(i):
 self._pressed = False
 self._fingerId = -1
 if self._moveTransform is not None:
 self._moveTransform.localPosition = vmath.vec3(0, 0, self._moveTransform.localPosition.z)
 self._value = vmath.vec2(0,0)

 def getValue(self):
 return self._value

 def onDestroy(self):
 self.moveCtrl = None
 self._transform = None
 self._scene = None

	Attach the JoyStick.py to jsMove object, assign jsMoveCtrl to moveCtrl textbox.

	Adjust PlayerMovement.py as below:

import igeVmath as vmath
from igeCore.input.keyboard import Keyboard, KeyCode
from igeScene import Script

class PlayerMovement(Script):
 def __init__(self, owner):
 super().__init__(owner)
 self.speed = 2.0
 self.jsMove = None
 self._movement = vmath.vec3(0, 0, 0)
 self._transform = None
 self._rigidbody = None
 self._animator = None
 self._playerHealth = None
 self._jsMoveScript = None

 def onStart(self):
 self._transform = self.owner.getComponent("Transform")
 self._rigidbody = self.owner.getComponent("Rigidbody")
 self._animator = self.owner.getComponent("Animator")
 self._playerHealth = self.owner.getComponent("PlayerHealth")
 if self.jsMove is not None:
 self._jsMoveScript = self.jsMove.getComponent("Script")

 def onUpdate(self, dt):
 if self._playerHealth.hp <= 0:
 return
 h, v = [0, 0]
 if Keyboard.isPressed(KeyCode.KEY_W) or Keyboard.isPressed(KeyCode.KEY_UP):
 v = -1.0
 if Keyboard.isPressed(KeyCode.KEY_S) or Keyboard.isPressed(KeyCode.KEY_DOWN):
 v = 1.0
 if Keyboard.isPressed(KeyCode.KEY_A) or Keyboard.isPressed(KeyCode.KEY_LEFT):
 h = -1.0
 if Keyboard.isPressed(KeyCode.KEY_D) or Keyboard.isPressed(KeyCode.KEY_RIGHT):
 h = 1.0

 if h == 0 and v == 0 and self._jsMoveScript is not None:
 mv = self._jsMoveScript.getValue()
 h = mv.x
 v = -mv.y

 if h != 0 or v != 0:
 self._movement = vmath.vec3(h, 0, v)
 self._movement.normalize()
 self._movement = self._movement * self.speed * dt
 newRotation = vmath.quat_look_rotation(self._movement, vmath.vec3(0.0, 1.0, 0.0))
 self._rigidbody.moveRotation(newRotation)
 self._rigidbody.movePosition(self._transform.position + self._movement)
 self._animator.setValue("isWalking", True)
 elif self._animator.getValue("isWalking"):
 self._animator.setValue("isWalking", False)

 def onDestroy(self):
 self.jsMove = None
 self._transform = None
 self._rigidbody = None
 self._animator = None
 self._playerHealth = None
 self._jsMoveScript = None

	Assign jsMove to jsMove textbox in Script Inspector.

Now, when play the game, the MC character will be able to controlled using the Move JoyStick, and he can shoot using Shoot button in the screen.

[image: Mobile Control]

Checkout ige-tutorials, branch 09-mobile-control#9 github repo.

Footnotes

	#1

	https://github.com/indigames/ige-tutorials/tree/01-basic-scene

	#2

	https://github.com/indigames/ige-tutorials/tree/02-character-movement

	#3

	https://github.com/indigames/ige-tutorials/tree/03-camera-setup

	#4

	https://github.com/indigames/ige-tutorials/tree/04-enemy-setup

	#5

	https://github.com/indigames/ige-tutorials/tree/05-gui-hud

	#6

	https://github.com/indigames/ige-tutorials/tree/06-player-health

	#7

	https://github.com/indigames/ige-tutorials/tree/07-player-shooting

	#8

	https://github.com/indigames/ige-tutorials/tree/08-game-over

	#9

	https://github.com/indigames/ige-tutorials/tree/09-mobile-control

Python API

	igeScene

	Scene management

	igeCore

	Core module

	igeVmath

	Vector math

	igeSdk

	Publishing SDK

Footnotes

Index

 _images/menu_layout.png
File View Tool Asset Build Help

_images/new_cube.png
File View Tool Asset Buld Help

_images/man_shadow_flags.png
| S
C e eesous

'/ EXPORTNAMES
¥/ SHADER_MAKE-SHADOW

v/ TRANGLESTRP

v OPTIMZE MESH

v/ OPTIMZE_VERTEX

¥/ OPTIMZE_ANMATION

| SHADER_RECEIVE_SHADOW

¥/ SHADER_DEPTH_SHADOW
L swomuesor.
| SHADER_VERTEX_COLOR

| EMBEDDED_ANMATION

SHADER_NUM_DR_LA!
SHADER_NUM_POINT_.

_images/man_spot_light.png
v SpotLight

+ Enable
R:251

G251

a5t
10000

100000

30,0000

A285

W coor

Intensity
Range

Angle

_images/new_cube_scene.png
File View Tool Asset Buld Help

HEEEE [] Senvos coring soon.)

Hierarchy Settings Ingpeetor
Directionol Light U L i Active
cuve tso7asesen7Ac01 wo
u Cube Name
v Trenstorm
Loca
oo osazr 00000 positon
oo oo 00000 Rotation
L0000 L0000 10000 scale
Worla
oo oszr 00000 positon
oo oo 00000 Rotation
L0000 L0000 10000 scale
v Figuwe
 Encble
[E— ban [Biowse |
Fog Doulesice
 Frculing v ZTest
v zwie ScissorTest
L0000 Update Ratio
> Mesh
> Materc

| [Assets) Console
/

figures fonts scenes scripts sounds sprites

FPS: 71 fps

Show Hidden

_images/new_python.png
NewFolder b

New Animator >_

_images/assets_layout.png
[Assets| Console

7 igesample. ShowHden

Animator figwes fontBit. fonts porticles prefabs scemes scripts sounds sprites

_images/console_layout.png
Car © Autociear © Astoscrol w6 Lmt

12-05-2022 095706 ition' <igeVmath.vec3 object at 0x00000242472BD6C0>, hitNormal’ <igeVmath.vec3 object at 0x00000242472E90305}

12-05-2022 09:57:06.
12-05-2022 09:57:06. 547745,1.187430,14.072435

12-05-2022 0955706 hit Enemy_10

12-05-2022 09:57:08 Found Enemy

12-05-2022 0055706 hit: {hitObject <igeScene.SceneObject object at 0x00000242473011F0>, hitPosition': <igeVmath.vec3 object at 0x00000242472BD330>, hitNormal: <igeVmath.vec3 object at 0x00000242472E9990)
12-05-2022 0955706 hit obj: C++ SceneObject object

12-05-2022 09:57:06 hit position: ~41.914616,1.187430,-15.956136

12-05-2022 09:57:06 hit Cube_cp

12-05-2022 09:57:08 Found Enemy

12-05-2022 0955706 hit: {hitObject <igeScene.SceneObject object at 0x00000242473018D0, hitPosition': <igeVmath.vec3 object at 0x000002424728D6C0>, hitNormal: <igeVmath.vec3 object at 0x00000242472E9030)
12-05-2022 0955706 hit obj: C++ SceneObject object.

12-05-2022 09:57:06 hit position: ~41.442829,1.187430,-16 427925

12-05-2022 09:57:06 hit Cube_cp
12-05-202200:57:08 Found Enemy

_images/create_project.png
B e

File View Tool Asset Buld Help

FPS: 74 fps.

+ = A 3 Service (coming soon..)
s, s rovon s e
— e v
Directional Light i L ¥ Active
u d65300761601385 wup
main Name
v Transform
Local
00000 00000 00000 Position
00000 00000 00000 Rototion
1.0000 1.0000 10000 Scale
World
00000 00000 00000 Position
00000 00000 00000 Rototion
1.0000 1.0000 10000 Scale
v AmbientLight x
+ Encble
RSt | Giot | mits1 | A2ss [SkyColor
R102 G51 10 | A5 | GroundColor
00000 -1.0000 00000 Direction
v Environment x
+ Encble
v Shadow
RO GO Color
2048.0000 Size
Density
Wideness.
Bios
v Fog
R255 | Goss | B2s5 | A2ss] Color
Assets| Console 01000 Neor | 500000 Far
7 sample Show Hidden
- EEEEEn
IR figues fonts scenes scripts sounds sprites

_images/drag_python.png
v Script
 Enable

Scrpte/movepy For] | Browse

0008 eFY elapsed

_images/man_point_light.png
v PointLight

 Enabie
R119 GO 8255 | A2SS
11500
30000

10 color

Intensity

Range

_images/man_shadow.png
v Environment.

 Enabie

v Shodow

RE2 G4e
4086.0000

v Fog

R255 G2sS
01000 Near

Bl A2
4096.0000

02100

500000

00001

8255 | A2S5

500000 For

Color
Size
Density
Wideness

Bios

W coor

_images/man_platform_generic.png
Settings| Inspector
Sample
Sample
001
1
netindigames.igesample
landscope.
scenes/main.scene
Save
v Dependencies
dib
 igeEffekseer
igeGamesServices
igeNotiy
 igescene
igeSocial
igeWebview
pilow

pyimgui

Nome
Label
VersionName
VersionCode
Bundield
Orintation

StartScene

 igeBulet
igeFirebase.
 igeNavigation
o igePAL
 igesdk
 igeSound
opency

pybox2d

tensorflow

_images/man_platform_ios.png
¥ ios
mobile

configrios

orme;

110

12

RTWYA2MNS
iPhone Distribution

igeSomple-Adhoc-i0S.

RomDir
Confighir

Archs
DeploymentTarget
DeviceFamiy
DevelopmentTeamid
CodeSignidentity

ProvisioningProfile

_images/editor_layout.png
B e
Fie View Tools Buid
+ = -5

Hierarchy

Default Camera
Directional Light
v Environment
Beach
v NavigableArea
Floor
Restaurant
Hut
Restaurant
» Left Fences
» Right_Fences
» Umbrella
u

Profiler
Time: 13 ms
FPS: 75 fps

Help

Scene Preview Settings InEpEGLF

° D
6505fe210646ab49

Hut
ebdgaTassf6804be.

¥ Transform

oo
——
- ——
o o
——
——
+ Enable
 Z-Write
- .
= | > Mesh
"lﬂ » Material
+ Enable
-
+ Enable
+ Kinematic

Disable Deactivation

X
7 iGecionaa Show Hidden 3
soeo

K N B B BB E BN o
-

——

e

v o

- X
o Active

wup

Name.

PrefabD
10,0000 Position
00000 Rotation
10000 Scale
10,0000 Position
00000 Rotation
10000 Scale

x

Path | Browse

/ DoubleSide
o Z-Test

ScissorTest

Update Ratio

x
10000 Size
Margin
x
¥ cco
Trigger
¥/ Activestate
CollisionGroup
CollisionMask
Mass
Friction
Restitution
00000 LinearVelocity
10000 LinearFactor
LinearSleepThres|
00000 AngularVelocity

nav.xhtml

 Table of Contents

 		
 Indigames’ Game Engine Documents

 		
 Installation

 		
 From sources

 		
 From a release build

 		
 Editor Layout

 		
 Menu Bar

 		
 Toolbar

 		
 Scene View

 		
 Game Preview

 		
 Hierarchy

 		
 Inspector

 		
 Console

 		
 Asset Browser

 		
 Your First Scene

 		
 Create Project

 		
 Project Structure

 		
 Create Object

 		
 Scripting

 		
 Input

 		
 Using Touch Screen

 		
 Using Keyboard

 		
 Using Virtual Keyboard

 		
 Graphics

 		
 Assets workflow

 		
 Render Pipeline

 		
 Camera

 		
 Lighting

 		
 Ambient Light

 		
 Point Light

 		
 Spot Light

 		
 Directional Light

 		
 Shadows

 		
 Fogs

 		
 Model

 		
 Importing

 		
 Using Model

 		
 Animation

 		
 Animation Clips

 		
 Animator Controllers

 		
 The Animator Window

 		
 Animation State Machines

 		
 Animation Parameters

 		
 Animation transitions

 		
 Transition Conditions

 		
 Graphical User Interface

 		
 Canvas

 		
 RectTransform

 		
 Pivot

 		
 Anchors

 		
 UI Components

 		
 UIImage

 		
 UIMask

 		
 UIText

 		
 UITextField

 		
 UIButton

 		
 UISlider

 		
 UIScrollView

 		
 Audio

 		
 AudioSource

 		
 AudioListener

 		
 AudioManager

 		
 Physic

 		
 Rigidbody

 		
 Collision

 		
 BoxCollider

 		
 SphereCollider

 		
 CapsuleColider

 		
 CompoundCollider

 		
 MeshCollider

 		
 Constraints

 		
 FixedConstraint

 		
 HingeConstraint

 		
 SliderConstraint

 		
 SpringConstraint

 		
 Dof6SpringConstraint

 		
 Softbody

 		
 PhysicManager

 		
 Navigation

 		
 NavMesh

 		
 DynamicNavMesh

 		
 Navigable

 		
 NavArea

 		
 OffMeshLink

 		
 NavAgent

 		
 NavObstacle

 		
 NavAgentManager

 		
 Particle System

 		
 Effekseer Editor

 		
 Particle

 		
 ParticleManager

 		
 Platform Configuration

 		
 Dependencies

 		
 Windows Workstation

 		
 MacOS Workstation

 		
 Build Menu

 		
 Project Setting Panel

 		
 Generic Configuration

 		
 Android Platform Settings

 		
 iOS Platform Settings

 		
 Third-Person Shooter

 		
 1. About Scene

 		
 Create Object

 		
 Add Components

 		
 Scripting

 		
 2. Scene Setup

 		
 Open The Scene

 		
 Scene Navigation

 		
 Scene Management

 		
 3. Background Music

 		
 4. Character Movement

 		
 Add MC

 		
 Character Animation

 		
 Character Physic

 		
 Character Movement Script

 		
 5. Camera Setup

 		
 6. Add Enemy

 		
 7. GUI & HUD

 		
 Add Score

 		
 Add Health Bar

 		
 8. MC Health

 		
 Player Health

 		
 Enemy Attack

 		
 9. MC Shooting

 		
 Add Gun to MC

 		
 Add Fire Particle

 		
 Add Smoke Particle

 		
 Player Shooting

 		
 Update Score

 		
 10. Game Over

 		
 Game Over UI

 		
 Spawning Enemy

 		
 Game Over Script

 		
 Replay The Game

 		
 11. Mobile Control

 		
 Shoot Button

 		
 Movement JoyStick

 		
 Python API

_images/man_ambient_light.png
v AmblentLight

+ Enable
R101 Glol Bio1
R102 G5l B0

00000 -1.0000

A285
A285
00000

M siycoor
© GroundColor

Direction

_images/man_animation_clip.png
Assets Console

I N

NoMona.. NoMan.. NoMan.. NoMan.. NoMan.

& E--W
5

NoMan@... NoMan@... NoMar NoMan... NoMane..

_images/hierarchy_layout.png
L I—

main

Default Camera
Directional Light
ScoreManager
EnemyManager

v Envi

v Fences
Fence
Fence_cp
Fence_cp_cp
Fence_cp_cp_cp
Fence_cp_cp_cpcp.
Fence_cp
Fence_cp_cp
Fence_cp
Fence_cp_cp
Fence_cp_cp_cp
Fence_cp_cp_cpcp.
| Fencecp_cp-cp-cp-cp
Fence_cp_cp_cp-cp-cp.
Fence_cp_cp_cp_cpcp-cp
Plane
Plane_cp
Plane_cp
v Restourants,
Restaurant
Restaurant_cp
Restaurant_cp_cp.
Restaurant_cp
Restaurant_cp_cp.
v Houses
FL
Flcp
Flcp
Fl_cp_cp
Fl_cp_cp_cp
Fl_cp_cp_cp_cp
Fl_cp_cp_cp-cp-cp
v Deck
v Deck

Deck_cp
Deck en on

_images/inspector_layout.png
Settings | Inspector

Camera v | Ad
Y D ¥ Actie

9996acazlas6ised wp
Fi_cp_cp-cp-cp Name

¥ Transform
Local
128006 |0.0000 -7.8649 Position

00000 -125390 0,000 Rotation

50001 50000 50001 Scale
World
34801 |0.0000 -14:6128 Position

00000 -1703%0 0,000 Rotation
50001 50000 50001 Scale

v Figure x
+ Enable
figures/Beach/Hut 2.dae Path | Brov
Fog +/ DoubleSide
 FFCuling Z-Test
 Z-Write ScissorTest
1.0000 Update Rati
> Mesh
> Materil
¥ Navobstacle x
+ Enable
60000 Radius
50000 Height
¥ PhysicCapsule x
+ Enable
Continous 3 Kinematic
Trigger

Disable Deactivation W] activeState
2 Collsion Gre

_images/man_animator.png
EERFooretes) 0

figures/chor/NoMan.pyxf- Base Model
Layers

|]
Layer A [}

-

ourerarment O

NoMan@Left

\

5

NoMan@Right

880020485018122 D

Any Nome
AnimClp

v Transitions

Transition Mute

Any_NoMan@Dead
Any_NoMan@lde
Any_NoMan@Forward
Any_NoMan@Back
AnyNoManeLeft
Any_NoMan@Right
Any_NoMan@BackLeft
Any_NoMan@BackRight
Any-NoMan@ForwardLeft
Any-NoMan@ForwardRight

P — °H [T— o,]
NoMengBa | O
[Assets) consoie Aoset [Anmatarrevew |
/ / figtes| / [eher| Show Hidden
NoManc.| Noen.. NoMm.. NoMm. NoMan. Noon. NoMan. Nowan. NoMom. NoMan. Nobn. Novn. Nt Noon. Novom. Novin. Noval

[3 (. . |

_images/man_animator_param.png

_images/man_animation_condition.png
Settings.
Any_NoMan@Dead
Mute

00000

 HasExitTime
1.0000

+ FixedDuration
00000

¥ Conditions

ho. Less ¥

¥ ¥

Name.

Offset

ExitTime

Duration

00000

_images/man_animation_state_machine.png
© NoManeFowaraLeft H., [— o,)

Nouenesigt O

H., [PETm— o,)

ouretet 0

NoMan@BackLeft

NoMan@Dead

_images/man_animator_window.png
efg34te0276140dc
NoMan@idie
figures/char/NoMan@idie.pyxa AnimClip
v AnimationClip

00000 StartTime.

O 05331 EvalTime

© 10000 Speed
 Loop

M foometes) 0000

figures/char/NoMan.pyxt Base Model

Layers =
[]

LoyerA

_static/plus.png

_images/man_audio_listener.png
v AudioListener
Enable

_images/man_audio_manager.png
+ Enable
10000 Global Volume

_images/man_directional_light.png
¥ DirectionalLight

 Encble

R2ss Gass | moss | wess [cor
07500 ntensity

_images/man_figure_component.png
v Figure

 Enabie
figures/beach/Restaurant.doe Path | Browse

Fog Doubleside
 FFCuling o Z-Test
o z-Wiite ScissorTest

10000 Update Ratio

v Mesh
Restourant (2306 v 4704 v
v Material

FEXASCOsE3FEXASCOI2FXASCOISFBXASCOT2Detauit
figures/beach/CartoonSummerBeach Exteriorpys ColorSampler
R2ss Goss B2ss | A2ss [oiftuseCaor
10000 Specularstength
00000 Specuiarpower

_images/man_audio_source.png
¥ AudioSource

 Enabie
Autoplay
Streom
10000
00000
00000
10000.0000
00000 00000
LINEAR DISTANCE
05000
10000

single

Loop

00000

Track | Browse
Volume

Pan

Min Distance

Max Distance
Velocity
Attenuation Model
Attenuation Factor

Doppler Factor.

_images/man_camera_inspector.png
v Camera

 Enabie
defout_camera
45,0000
10000
50000000
17033
1
ortho.
LockTarget
whase
10000 10000
00000 00000
00000
R0 G200 B2 A2SS

Nome
Fov
Near
For
Aspect
U

Serscale
Scroffset
SerRot

M ieercolor

_images/man_gui_button.png
¥ UButton

¥ Encble
 interactable
Color Tint

sprites/background
RS GlO7
R1% Gilo
R72 Goz
R1% Gilo
Siiced

8235
B:109
8244
B:109

01000

200000
200000
200000
200000

w255
w255
w255
A28

¥/ Transition Mode
Image

Normal

Wl Pressed
W selected
[l Disctiea

Fade Duration

¥] sprite Type
Border Left
Border Right
Border Top

Border Bottom

_images/man_gui_canvas.png
File View Tool Asset

+ = [(2 =

Hisrarchy Seene) Preview

Default Camera

Directional Light

sand

v Bamboo_Umbrella

Paim_Tree_1
Paim_Tree_2
Rattan_Umbrealla

Rattan_Umbrealla

Restaurant

7 Ucteate pNew Object

Copy Camera

Paste Primitive

Duplicate ~ Light

Delete. Audio
Text
Effect
Gu

Build Help

Yvvvy

pUimage
UlText
UlTextBitmap
UlTextField
UButton
UiSiider
Ulscrolview
UMask

Settings InEpEGLF

Camera v A
2 DV Actve
C504607c0d324deT wp
Canvas Name.

¥ RectTransform

00000 X 00000 Y 00
$ 5400000 W 960.0000 H

05000 05000 Anchor Min
05000 05000 Anchor Max
05000 05000 Pivot

00000 | 00000 00000 Rotation
10000 | 10000 | 10000 Scale

v Canvas x
+ Enable
540.0000 9600000 Designsize
540.0000 9600000 TorgetSize
Expand ¥/ Screen Match M

_images/man_gui_anchor.png
¥ RectTransform

E 00000 x 00000 Y 00000 Z
=000 H

o/ 6] [@

566
20 @ (O S
IEEE

o Enl

_images/man_gui_bitmap_font_creator.png
v BitmapFontCreator

Load FontBitmap
Save FontBitmap. |
/./sample/fontBitmaps/ballon_{ | Image

Characters Set

1

__ Tuvwxyz

e 9234567890
S RGN
= =5 $@1e0+E

600000 Advance
1 Index
8 Unicode
65,0000 30000 position
500000 700000 size
00000 00000 Offset
500000 Advance
2 Index
c Unicode
00000 00000 Position
00000 00000 Size
00000 00000 Offset
00000 Advance

PrevPage [

_images/man_gui_image.png
Vv Uimage
 Encble
sprtes/logopng
[m—
Simple
Radicl 90
Bottom Left
04200
Clockwise

R255 G255 Bi255

A285

Path

¥] sprite Type

] Fil Method

! Fil Origin
il Amount

I coor

_images/man_gui_img_button.png

_images/man_gui_canvas_inspector.png
¥ Canvas

+ Enable
540.0000
540.0000

Expand

960.0000
960.0000

Designsize
TargetSize
¥ Screen Match M

_images/man_gui_img_slider.png

_images/man_gui_img_text.png

_images/man_gui_img_image.png

_images/man_gui_img_scrollview.png

_images/man_gui_mask.png
¥ UMask
 Encble
Vertical
Bottom
10000

¥/ Fill Method
| Fill Origin
Fill Amount

_images/man_gui_img_text_bitmap.png

_images/man_gui_img_textfield.png
ter some text.

_images/man_gui_scrollview.png
v UiScrollView
+ Enable
sprites/background

 Interactable

Siced
100000
100000
100000
100000
R255 G255 B2ss A0
 Horizontal
 Vertical
Elastic
01000
1000000 1000000
 nertia

01350

Background

¥] sprite Type
Border Left
Border Right
Border Top

Border Bottom

W coor

¥/ Move Type
Elasticity.
Elastic Extra

Deceleration Rate.

_images/man_gui_slider.png
v UsSlider

 Encble
 interactable
R255 G2ss
R1% Gilo
R1% Gilo
Left To Right

Whole Numbers.

8255
B:109
B:109

0.1000

00000
1.0000
00000

A285
A285
A285

I Normai Color
Il Pressed Color
Il Disobied Color

Fode Duration
¥ Direction

Min

Max

Value

_images/man_gui_recttransform.png
¥ RectTransform

@l

05000
05000
05000

00000

10000

00000 x
5400000 W

00000
1.0000

00000 v
%0000 H
05000 Anchor Min
05000 Anchor Max
05000 Pivot
00000 Rotation
10000 Scae

00000 Z

_images/man_gui_scrollbar.png
v Uscroliar
+ Enable
sprites/background Background

 Interactable

Siced ¥] sprite Type
100000 Border Left
100000 Border Right
100000 Border Top
100000 Border Bottom

R2w4 | G2 B24 A2ss [coor
R255 | G285 | B2ss A2ss [Normol Color
R190 | G99 | o9 | A2ss [Pressed Color

Ri% Gl | 819 Aize [Disobled Color
01000 Fade Duration

Left To Right ¥ Direction
10000 Ve

06000 size

_images/man_model_import.png
Asset

92445165 cre
oyinderdae Name.
v Options
10000 BASE_SCALE
/ EXPORT_NAMES
SHADER_MAKE_SHADOW
+/ TRIANGLE_STRP
/ OPTIMIZE_MESH
/ OPTIMIZE_VERTEX
/ OPTIMIZE_ANMATION
SHADER_RECEIVE_SHADOW
/ SHADER DEPTH_SHADOW
7 SHADER_NUM_SPOT_LAMP
SHADER_VERTEX_COLOR
EMBEDDED_ANMATION
3 SHADER_NUM_DIRLAMP
7 SHADER_NUM_PONT_LAMP

save

_images/man_nav_dynamicnavmesh.png
+ Enable
+ Debug

1.0000

Watershed

03000
02000
20000
06000
05000

45,0000
80000

200000
120000
13000
60000
10000
10000

16

Buid

1.0000

Tiesize
Calisize
Celieight
AgentHeight
AgentRadius
AgentMaxClmb
AgentMaxSiope
RegionMinsize
RegionMergesize.
EdgeMaxLength
EdgeMaxError
SampieDistance
SampleMaxrror
Padding
PartitionType
MaxObstacie

MaxLayer

_images/man_gui_text.png
v UText

 Encble

RectAutoScale
Text Text
fonts/Manjari-Reguiar.ttf Font
12 Size

Ri2e G126 |Bi28 A255 [Color
Genter ¥ Algorzontal

Center ¥ AlignVertical

_images/man_gui_textfield.png
v UTextField

+ Enable

+ RectAutoScale

TextField

fonts/Manjari-Reguiar.ttf

Ri128
R:255
Center

Center

G128
G255

70
8128
B:255

A285
A285

Text
Font
size

1 coor

Ml sociground
¥ Algniorizental

¥ Algnvertical

_images/man_nav_navagent.png
v NavAgent

 Enabie
 Syncosition

00000 Radius
00000 Height

50000 Maxhccs!

30000 MaxSpeed

00000 00000 00000 Targetpos

o FitterType

High ¥] NovQuaiity

Medium ¥ NavPushiness

_images/tut_3rd_shooter_added_mc.png

_images/man_nav_navagentmanager.png
¥ NavAgentManager x
 Enabie
s12 Max Agents
10000 Max Agent Radius.

_images/tut_3rd_shooter_added_shoot.png

_images/tut_3rd_shooter_added_mobile_control.png

_images/tut_3rd_shooter_audiolistener.png
Settings Inspector
2 D

25ede309bcd7f2d5

Default Camera

¥ Transform

Local
00000 50000
300000 00000
10000 10000
World
00000 50000
300000 00000
10000 10000
v Camera
 Encble
default_camera
450000
10000
5000.0000
L6362
1
ortno
LockTarget
wBase
10000
00000
00000

R102 G204 B:230

v AudioListener
+ Enable
‘Add Component

 Active
wup
Name.
50000 Position
00000 Rotation
10000 Scale
50000 Position
00000 Rotation
10000 Scale
Name.
Fov
Near
For
Aspect
Up
1.0000 ScrScale
00000 Scroffset
SerRot

255 [ClearColor

_images/tut_3rd_shooter_animator.png
. 0000000000000 k..N .]

oo COOENDNR 00 Any NeMan@Forward Name
Boel ma Mute
e 100.0000 B 00000 Offset
isWalking Fase v - HosExtTime
v Conditions
e Greater v 00000 5]
IsWaking Ewol v Tue v -
N []

EER B
Gonsale
! T / (R Show Hidden

Player.a...

_images/tut_3rd_shooter_added_camera.png

_images/tut_3rd_shooter_add_component.png
6 D
790ef8cT20066814
Houses.
¥ Transform
Local

00000 00000
00000 00000
13333 13333
World

00000 00000
00000 00000
10000 1.0000
Add Component
Graphics >
Lights >
Audio. >
Physic >
Navigation >
BoneTransform

Particle

 Active
)
Name.
00000 Position
00000 Rotation
13333 Scale
00000 Position
00000 Rotation
10000 Scale

_images/tut_3rd_shooter_added_gameover.png
GAME OVER

_images/tut_3rd_shooter_added_enemy.png

_images/tut_3rd_shooter_added_health.png

_images/tut_3rd_shooter_added_gui.png

_images/man_nav_navobstacle.png
¥ NavObstacle
 Encble
10780 Radius
09840 Height

_images/man_nav_offmesh_link.png
¥ OffMeshLink
+ Enable
OffMesh_Sand_01

 Bidrectional
1.0000

6

Endpoint

Radius
Mask

AreaD

_images/man_nav_navigable.png
v Navigable
Enable

Recursive

_images/man_nav_navmesh.png
¥ NavMesh x

 Enabie
 Debug Buid
o Tiesize
03000 Calisize
02000 Celieight
20000 pr——
06000 AgentRadius
05000 AgentMaxClmb
45,0000 AgentMaxSiope
80000 RegionMinsize
200000 RegionMergesize.
120000 EdgeMaxLength
13000 EdgeMaxError
60000 SampleDistance
10000 SampleMaxrror
10000 10000 10000 podding

Watershed ¥| PartitionType

_images/man_particle_editor.png
uuuuuuuuuu

_images/man_particle_manager.png
v ParticleManager

 Encble
 Culing
10000000 10000000 1000.0000
4
2000

2

Culling World Size
Culling Layers
Max Parcicles

Number Threads

_images/man_nav_recast.png
Tools
® Test Navmesh

0 Prune Navmesh

0 Create Tiles

) Create Off-Mesh Links
2 Create Convex Volumes
0 Create Crowds

® Pathfind Follow
@ Pathfind st
) Pathfind Sliced

2 Distance to Wall

) Raycast

0 Find Polys in Circle
0 Find Polys in Shape

2 Find Local Neighbourhood

Include Flags
® Walk

® swi

Properties
0 Show Log.
® Show Tools

030
CellHeight 0.20
Voxels 248 x330

Agent
Height]
rafius
Max(Glimb
Max Slope]

Region
Min Region Size
Mefged Region Size

) Monotore Parti

Polygonization

Max Edge Length
Max Edge Errdf

Vers per Py

_images/man_new_animator.png
Assets | Console

LI N N N N N

NoMana.. NoMan... NoMar NoMn... NoMar NoMan.. NoMar NoMon.. NoMon.. NoMon.. —NoMon.. NoMan..

‘ NewFoider b
New Script »

NoMan@... NoMan@.. NoMan.. NoMan.. NoMan@.. NoMan@. New Animator b pyAnimationControler

_images/man_particle_particle.png
v Particle

 Enabie
+ Loop ¥ AutoDraw
sffects/001_magma_effect/cura.efi Etfect | Browse
o GroupMask
10000 Speed
10000 TimeScale
00000 00000 00000 Targetpos

00000 00000 | 00000 00000 Parameters
RO G65 B4

255 Color

_images/preview_layout.png

_images/new_script.png
| sewos s
Camero Mo

s oy
Fave

Caramrigwe

e 1m0
o

Towtmep

e
I

00000 00000 00000 Rotation

wup

_images/toolbar_layout.png

_images/scene_layout.png

_images/man_nav_navarea.png
v NavArea
Enable

_images/man_physic_capsule_collider_.png

_images/man_physic_compound_collider_.png

_images/man_physic_box_collider_.png

_images/man_physic_capsule_collider.png
v CapsuleColider
 Enabie
10000
10000
00250

Height
Radius

Margin

_images/man_physic_hinge_constraint.png
v HingeConstraint

+ Enable Bodies Collsion

Other body

34028234663852885981170418348451692544 Break Impulse

00000 00000 00000
00000 10000 00000
10000 00000 00000
-a1416
31416

Anchor
Axist
Axis2
Lower Limit

Upper Limit

_images/man_physic_manager.png
¥ PhysicManager x
+ Enable

 Deformable o/ Debug
10 Numiterations
4 NumSubsteps
0002 Timestep
10000 UpdateRatio

00000 98100 00000 Gravity

_images/man_physic_dof6_constraint.png
¥ DoféConstraint x
 Enable Bodies Colision

Other body
34028234663852685081170418346451692544 Breck Impuise

1.0000 1.0000 10000 Lower Limit
00000 00000 00000 Upper Limit
00000 00000 00000 Torget Velocity
00000 00000 00000 Bounce
00000 00000 00000 Enable Spring
00000 00000 00000 Stiffness
00000 00000 00000 Damping
00000 00000 00000 Enable Motor
00000 00000 00000 Max Motor Force
00000 00000 00000 Enable Servo
00000 00000 00000 ServoTarget

¥ Angular Constraints
1.0000 1.0000 10000 Lower Limit
00000 00000 00000 Upper Limit
00000 00000 00000 Torget Velocity
00000 00000 00000 Bounce
00000 00000 00000 Enable Spring
00000 00000 00000 Stiffness
00000 00000 00000 Damping
00000 00000 00000 Enable Motor
00000 00000 00000 Max Motor Force
00000 00000 00000 Enable Servo

00000 00000 00000 Servo Target

_images/man_physic_fixed_constraint.png
v FixedConstraint
 Enabie Bodies Colision
Sand Other body
40282346638526850811 7041834845 Breakimpuise

_images/tut_3rd_shooter_mc.png
Settings Inspector
v Figure x
+ Enable
figures/characters/NoMan.dae Path | Browse
Fog + DoubleSide
+ FFCuling Z-Test
 Z-Write ScissorTest
1.0000 Update Ratio
> Mesh
> Material
v Animator x
+ Enable
animators/Ployer.anim Animator
¥ CapsuleColider x
+ Enable
1.0000 Height
05000 Radius
00250 Margin
¥ Rigidoody x
+ Enable
 Gravity v ccp
Kinematic Trigger
Island Sieep ¥/ Activestate
1 ColisionGroup
-1 CollisionMask
1.0000 Mass
02000 Friction
00000 Restitution
00000 00000 00000 LinearVelocity
1.0000 1.0000 10000 LinearFactor
00000 LinecrSleepThres
00000 00000 00000 AngularVelocity
1.0000 1.0000 10000 AngularFactor
00000 AngularSieepThre
00000 1.0000 00000 PositionOffset
¥ Constraints
Fixed Constraint v Add
v Script x
+ Enable
scripts/PlayerMovement.py. Path | Browse
2.0000 speed

_images/tut_3rd_shooter_nav.png
Settings Inspector
6 D

1501056669492509
NavigableArea
» Transform
v Navigable
+ Enable
 Recursive
v DynamicNavMesh
+ Enable

Debug

01000

00500

02500

01200

01000

45,0000

80000

200000

120000

13000

60000

10000

01000 01000
Watershed

16
‘Add Component

 Active

Buid

01000

wup

Name.

Tiesize
Calisize
Celieight
pr——
AgentRadius
AgentMaxClmb,
AgentMaxSiope
RegionMinsize
RegionMergesize.
EdgeMaxLength
EdgeMaxError
SampleDistance
SampleMaxrror
Padding
PartitionType
MaxObstacie

MaxLayer

_images/tut_3rd_shooter_mc_rigidbody.png
v CapsuleColider
+ Enable

+ Enable
 Gravity

Kinematic

Island Sieep

00000
1.0000

00000
00000

00000
¥ Constraints

Fixed Constraint

1.0000
05000
00250

10000
02000
00000
00000
00000
00000
00000
10000
00000
10000

v cco

Trigger

00000
1.0000

00000
00000

00000

v

x
Height
Radius
Margin

x
Activestate

ColisionGroup
ColisionMask

Mass

Friction

Restitution
LinearVelocity
LinearFactor
LinearSleepThreshold
AngularVelocity
AngularFactor
AngularSiespThreshold

PositionOffset

Add

_static/minus.png

_static/file.png

_images/tut_3rd_shooter_hud_score.png
Soe@E.

_images/tut_3rd_shooter_hud_heart.png
Scene

Settings Inspector

SCORE: 0

57) . tive

¥ RectTransform
420000 X 420000
320000 W 32,0000

00000 1.0000
00000 1.0000
05000 05000

= T eo T s
oo I

Enabl

| Interactoble
Cnass | oams e | s Moo

_images/tut_3rd_shooter_js_move.png
Scene

SCORE: 0

@ e e

¥ RectTransform
.0000 E .0000 00000 Z

¥ Ulmage x

' Interact
Coems e e as Wew

_images/tut_3rd_shooter_hud_score_val.png
Scol

86842346561de80D

txtScoreValue

_images/man_particle_particle_.png

_images/man_physic_box_collider.png
¥ BoxColider
 Enabie
08070 09650 09960 size
00250 Margin

_images/man_physic_sphere_collider.png
+ Enable
10000 Radius
00250 Margin

_images/man_physic_sphere_collider_.png

_images/man_physic_softbody.png
v Softbody
+ Enable
ccp

Active

00000
1.0000

00000
1.0000

00000

SeffCollision

V_TwoSided
00000

¥ Constraints

Fixed Constraint

00000
05000
10000
00000
10000
08000
00000
10000
10000
00000

05000
1.0000

00400
10000
10000
10000
00000
00000
02000
00000
10000
01000
10000
10000

00000

Kinematic

00000
1.0000

00000
1.0000

00000

Trigger
¥] Activestate
ColisionGroup
ColisionMask
Mass
Friction
Restitution
Linearvelocity
LinearFactor
LinearSleepThreshold
AngularVelocity
AngularFactor
AngularSiespThreshold
PositionOffset

SoftCollision

00000

Springstifiness
RestLengthScale
Numiterations
SleepThreshold
GravityFactor
VelocityFactor
DampingCoef
PressureCoeff
VolumeConvCoeff
FrictionCoeff
PoseMatchCoeff
RigidHordness
KineticHardness
SoftHardness
AnchorHordness

] Acroodel
WindVelocity

Mesh Index

v Add

_images/man_physic_softbody_.png

_images/man_platform_build_menu.png
File View Tools Help.

[& [[Windows

Android

=) WenGL | R Preview

v main
Default Camera
Directional Light

v Environment
Beach
v NavigableArea
Floor
v Restourant
SpawnPoint 03
v Hut
P

_images/man_physic_spring_constraint.png
 Bodies Collsion

+ Enable

Other body

34028234663852885981170418348451692544 Break Impulse

10000 00000
10000 00000
05000 00000
10000 10000
00000 00000

00000
00000
00000
10000
00000

Enble
Stiffness
Damping
Lower Limit

Upper Limit

_images/man_platform_android.png
v ondroid

mobile

config/android

armeabi-v7ciarmeA-via;
2
a1

v Permissions
android permission/NTERNET
android permission ACCESS_NETWORK_
android permission ACCESS_WIFLSTATE
android permission WRITE_EXTERNAL_S1
android permission VIBRATE

v Features
Feature

androld hardware.touchscreen

RomDir
Confighir
Archs
MinSdVersion

TargetSdkVersion

Required

v =

_images/tut_3rd_shooter_gameover_ui.png
Anchor Min
Anchor Max
Pivot
Rotation
Scale

o
Cemem s e

Fade Duration
Sprite Type
Border Left

Console.

Border Right

ST Border Top

s

_images/tut_3rd_shooter_fxsmoke.png
Scene

Settings.

Inspector

_images/tut_3rd_shooter_hud_damaged.png

_images/tut_3rd_shooter_gun.png

_images/tut_3rd_shooter_hud_healthui.png

_images/tut_3rd_shooter_hud_health_slider.png
=

—
A v RectTransform
[} 1440000 X 420000 Y 0.0000
© m—— SEORE: 0 o

som0 —
o —
e —

— 5
——

—=s

 iteractabie
R2ss | Goss | mass A2 [NormalColor

R208 | G204 B2os A2ss [Pressed Color

Ri4 | Gid B A25s [Disobled Color
01000 Fade Duration

Left ToRight ¥ Diection
00000 vin
1000000 Max
1000000 Ve

Whole Numbers.

_images/tut_3rd_shooter_btn_shoot.png
Scene e ———

1

SCORE: 0

Enc
|/ Interactoble

R:255
Simple

v Script

o e B - — e

_images/tut_3rd_shooter_bgm.png
Settinge) (EEREEEN

43030973c4808678

Environment

¥ Transform

Local
00000 00000
00000 00000
10000 10000

World
00000 | 00000
00000 00000
10000 10000

v AudoSource

 Encble

Autolay
Stream
oudio/bgmmp3
10000
00000
00000
100000000
00000 00000
LINEAR DISTANCE
05000
10000

‘Add Component

 Active
wup
Name.
00000 Position
00000 Rotation
10000 Scale
00000 Position
00000 Rotation
10000 Scale
x
single
Loop

00000

Track | Browse
Volume

Pan

Min Distance

Max Distance
Velocity
Attenuation Model
Attenuation Factor

Doppler Factor.

_images/tut_3rd_shooter_enemy.png
Settings Inspector

00250 Margin
v Rigidbody x
 Enabie
 Graity ¥ cco
Kinematic Trigger
Isiond Slesp ¥] Activestate
1 ColisionGroup
- [——
10000 Mass
02000 Friction
00000 Restitution
00000 00000 00000 Linsarvelocity
10000 00000 10000 LinearFactor
00000 LinearSieepThres!
00000 | 00000 | 00000 AnguarVelocity
00000 | 10000 | 00000 Anguarfactor
00000 AnguarSiespThre
00000 | 10000 | 00000 PositionOffset

¥ Constraints

Fixed Constraint v | Add
v NavAgent x
 Enabie
 Syncosition
01250 Radius
02500 Height
10000 Maxhccsl
10000 Maxspeed
00000 00000 00000 Torgstbos
o FiterType
High ¥] NovQuaity
Figh ¥] Noveushiness
v Seript x
 Enable
scripts/EnemyMovement.py Path | Browse
e player
v Seript x
 Enabie
scripts/EnemyHecith.py Path | Browse

10 scoreValue

_images/tut_3rd_shooter_camera.png
v Camera x

 Encble
defauttcomera Name
450000 Fov
10000 Neor
50000000 For
16362 Aspect
1 w
orto
LockTorget
whase
10000 10000 Serscale
00000 00000 Seroffast
00000 SerRot
Ric2 G20k 820 A255 [ClearColor
v AudoLlstener x
 Encble
v Figure x
+ Encble
JigeCretor/opp/figures/camera Poth | Brovwse
Fog + Doubieside
¥ Fruiing v 2Test
v z-wite ScissorTest
10000 Update Ratio
» Mesh
» Material
v sert x
+ Encble
scripte/CamercFolow.py Patn | Browse
50000 smootring

NoMan/Transform torget

_images/tut_3rd_shooter_fxshoot.png
Scene Preview Inspector
3

7ec798cb221d043
fxShoot

¥ Transform

_images/man_physic_mesh_collider_.png

_images/man_physic_rigidbody.png
v Rigidbody
+ Enable
ccp

Active

00000
1.0000

00000
1.0000

00000
¥ Constraints

Fixed Constraint

10000
05000
10000
00000
10000
08000
00000
10000

10000
00000

Kinematic

00000
1.0000

00000
1.0000

00000

Trigger
¥] Activestate
ColisionGroup
ColisionMask
Mass
Friction
Restitution
LinearVelocity
LinearFactor
LinearSleepThreshold
AngularVelocity
AngularFactor
AngularSieepThreshold

PositionOffset

v Add

_images/man_physic_mesh_collider.png
¥ MeshColider
Enable
Convextiull o TriangieMesh
) Meshindex
00250 Margin

